Skip to main content
Log in

Derivation of 3D cloud animation from geostationary satellite images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Large-scale cloud animation is crucial to TV weather presentation, weather observer training and video products. In this paper, a physically based system is presented for the derivation of time-varying 3D clouds from geostationary satellite images. Cloud properties are derived from a set of meteorological models while the clouds are rendered by graphics models, the proposed method thus presents a new modeling methodology, which integrates the reality of the data with the realistic visual feeling. In particular, image pixels are first classified into cloud-free, water cloud, ice cloud, thin cirrus cloud in terms of their spectral signature. Then, cloud top surface, cloud bottom surface and cloud extinction are generated by applying different combinations of images. Finally, clouds are rendered under various light directions or view directions. The results have indicated that the proposed method can yield a realistic and approximately valid clouds with similar appearance to those in the input satellite images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. álvarez L, Castaño C, Garcĺa M, Krissian K, Mazorra L, Salgado L, Sánchez J (2006) 3d atmospheric cloud structures: Processing and visualization. Video presentation at IEEE Conf on Computer Vision and Pattern Recognition

  2. Baker N, Kilcoyne H (2012) Joint polar satellite system (jpss) cloud top algorithm theoretical basis document (atbd). http://jointmission.gsfc.nasa.gov/sciencedocuments/2013-03/474-00041_ATBD-Cloud-Top_A.pdf

  3. Bouthors A, Neyret F (2004) Modeling clouds shape. In: Eurographics (short papers)

  4. Chen W (2005) Satellite meteorology (in chinese). Beijing China

  5. Clark T (1974) A study in cloud phase parameterization using the gamma distribution. J Atmos Sci 31(1):142–155

    Article  Google Scholar 

  6. Dobashi Y, Iwasaki W, Ono A, Yamamoto T, Yue Y, Nishita T (2012) An inverse problem approach for automatically adjusting the parameters for rendering clouds using photographs. ACM Trans Graph 31(6):145:1–145:10

    Article  Google Scholar 

  7. Dobashi Y, Kusumoto K, Nishita T, Yamamoto T (2008) Feedback control of cumuliform cloud formation based on computational fluid dynamics. ACM Trans Graph 27(3)

  8. Dobashi Y, Nishita T, Yamashita H, Okita T (1998) Modeling of clouds from satellite images using metaballs. In: Proceedings of the 6th pacific conference on computer graphics and applications, pp 53–60

  9. Dobashi Y, Shinzo Y, Yamamoto T (2010) Modeling of clouds from a single photograph. Comput Graph Forum 29(7):2083–2090

    Article  Google Scholar 

  10. Dobashi Y, Yamamoto T, Nishita T (2009) Interactive and realistic visualization system for earth-scale clouds. In: Pacific graphics 2009 (poster paper)

  11. Ebert DS (1997) Volumetric modeling with implicit functions: a cloud is born. In: ACM SIGGRAPH 97 Visual Proceedings: The art and interdisciplinary programs of SIGGRAPH ’97, p 147

  12. Gardner GY (1985) Visual simulation of clouds. SIGGRAPH Comput Graph 19 (3):297–304

    Article  Google Scholar 

  13. Harris MJ (2005) Real-time cloud simulation and rendering. In: ACM SIGGRAPH, 2005 Courses

  14. Harris MJ, Lastra A (2001) Real-time cloud rendering. Comput Graph Forum 20(3):76–84

    Article  Google Scholar 

  15. Hocking J, Francis PN, Saunders R (2011) Cloud detection in meteosat second generation imagery at the met office. Meteorol Appl 18(3):307–323

    Google Scholar 

  16. Inoue T (1987) A cloud type classification with noaa 7 split-window measurements. J Geophys Res 92(D4):3991–4000

    Article  Google Scholar 

  17. Kajiya JT, Von Herzen BP (1984) Ray tracing volume densities. SIGGRAPH Comput Graph 18(3):165–174

    Article  Google Scholar 

  18. Kishtawal C (2003) Meteorological satellites. Satellite Remote Sensing and GIS Applications in Agricultural Meteorology p 67

  19. Kokhanovsky AA, Nauss T (2005) Satellite-based retrieval of ice cloud properties using a semianalytical algorithm. J Geophys Res 110(D19):1984–2012

    Article  Google Scholar 

  20. Kokhanovsky AA, Rozanov VV (2004) Simple approximate solutions of the radiative transfer equation for a cloudy atmosphere. In: Proceedings of SPIE, vol 5571, pp 86–93

  21. Miyazaki R, Yoshida S, Nishita T, Dobashi Y (2001) A method for modeling clouds based on atmospheric fluid dynamics. In: Proceedings of the 9th pacific conference on computer graphics and applications, p 363

  22. Nakajima T, King M (1990) Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. part i: Theory. J Atmos Sci 47(15):1878–1893

    Article  Google Scholar 

  23. Nauss T, Kokhanovsky AA (2011) Retrieval of warm cloud optical properties using simple approximations. Remote Sens Environ 115(6):1317–1325

    Article  Google Scholar 

  24. Nishita T, Dobashi Y, Nakamae E (1996) Display of clouds taking into account multiple anisotropic scattering and sky light. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques, pp 379–386

  25. Ou S, Takano Y, Liou K, Higgins GJ, George A, Slonaker R (2003) Remote sensing of cirrus cloud optical thickness and effective particle size for the national polar-orbiting operational environmental satellite system visible/infrared imager radiometer suite: sensitivity to instrument noise and uncertainties in environmental parameters. Appl Opt 42(36):7202–7214

    Article  Google Scholar 

  26. Pandey P, De Ridder K, Gillotay D, van Lipzig N (2012) Estimating cloud optical thickness and associated surface uv irradiance from seviri by implementing a semi-analytical cloud retrieval algorithm. Atmos Chem Phys 12:7961–7975

    Article  Google Scholar 

  27. Pruppacher HR, Klett JD, Wang PK (1998) Microphysics of clouds and precipitation

  28. Qiang F, Liou K (2008–2025) Parameterization of radiative properties of cirrus clouds. J Atmos Sci 50(13)

  29. Ricchiazzi P, Yang S, Gautier C, Sowle D (1998) Sbdart A research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere, vol 79, pp 2101–2114

  30. Riley K, Ebert D, Hansen C, Levit J (2003) Visually accurate multi-field weather visualization. In: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), pp 279–286

  31. Schpok J, Simons J, Ebert DS, Hansen C (2003) A real-time cloud modeling, rendering, and animation system. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation SCA ’03 160–166

  32. Setvák M, Doswell III CA (1991) The avhrr channel 3 cloud top reflectivity of convective storms. Mon Weather Rev 119(3):841–847

    Article  Google Scholar 

  33. Slingo A (1989) A gcm parameterization for the shortwave radiative properties of water clouds. J Atmos Sci 46:1419–1427

    Article  Google Scholar 

  34. Szejwach G (1982) Determination of semi-transparent cirrus cloud temperature from infrared radiances: Application to meteosat. J Appl Meteorol 21(3):384–393

    Article  Google Scholar 

  35. Wither J, Bouthors A, Cani MP (2008) Rapid sketch modeling of clouds. In: Eurographics Workshop on Sketch-Based Interfaces and Modeling (SBIM) Eurographics

  36. Wong E, Tsugawa R, Mulvey GJ (2011) Joint polar satellite system (jpss) viirs cloud base height algorithm theoretical basis document (atbd). http://www.star.nesdis.noaa.gov/JPSS/documents/ATBD/474-00045_VIIRS_Cloud-Base-Height_ATBD_Rev-_20110422.pdf

  37. Xu J, Zhang W, Yang J, Zhao L (2008) Hand book of fy2 on products and data formats (in chinese)

  38. Yuan C, Liang X, Hao S, Qi Y, Zhao Q (2014) Modelling cumulus cloud shape from a single image. Comput Graph Forum 33(6):288–297

    Article  Google Scholar 

  39. Yuan C, Liang X, Hao S, Yang G (2013) Modeling large scale clouds from satellite images. In: Pacific Graphics (short papers)

Download references

Acknowledgments

This paper is supported by the National Natural Science Foundation of China (No. 61170186) and the National High Technology Research and Development Program of China (No. 2013AA013701). We would like to thank the anonymous reviewers for helpful comments, and Professor Jiming Sun for the useful discussions on cloud physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Liang.

Appendix: The reflectance in MWIR image

Appendix: The reflectance in MWIR image

We use satellite images in longitude/latitude projection and the longitude and latitude for all pixels are sampled with equal spacing(0.05). For each pixel, the azimuth and zenith angles of the satellite and those of the sun are obtained by using the method of [26]. The measured MWIR radiance \(B_{\lambda _{mwir}}(T_{mwir})\) contains both thermal emission and solar reflection R at daytime [32]:

$$ B_{\lambda_{mwir}}(T_{mwir})=(1-\Re_{mwir})B_{\lambda_{mwir}}(T_{ir1})+\Re_{mwir}R $$
(A.1)

where \(R=\frac {S_{0}}{\pi }{d^{2}_{SE}}\cos (v_{0})\), S 0 is the constant solar spectral irradiance at 3.75μ m , d S E is the relative Sun-Earth distance, v 0 is the solar zenith angle, and λ m w i r = 3.75μ m. From (A.1), the reflection function is

$$ \Re_{mwir}=\frac{B_{\lambda_{mwir}}(T_{mwir})-B_{\lambda_{mwir}}(T_{ir1})}{R-B_{\lambda_{mwir}}(T_{ir1})} $$
(A.2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Yuan, C. Derivation of 3D cloud animation from geostationary satellite images. Multimed Tools Appl 75, 8217–8237 (2016). https://doi.org/10.1007/s11042-015-2738-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2738-7

Keywords

Navigation