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Abstract This paper extends our previous work on the potential of EEG-
based brain computer interfaces to segment salient objects in images. The
proposed system analyzes the Event Related Potentials (ERP) generated by
the rapid serial visual presentation of windows on the image. The detection of
the P300 signal allows estimating a saliency map of the image, which is used
to seed a semi-supervised object segmentation algorithm. Thanks to the new
contributions presented in this work, the average Jaccard index was improved
from 0.47 to 0.66 when processed in our publicly available dataset of images,
object masks and captured EEG signals. This work also studies alternative
architectures to the original one, the impact of object occupation in each
image window, and a more robust evaluation based on statistical analysis and
a weighted F-score.

Keywords Brain-computer interfaces - Electroencephalography - Rapid
serial visual presentation - Object segmentation - Interactive segmentation -
GrabCut algorithm

1 Introduction

The human brain is capable of processing audiovisual information in a way that
clearly outperforms machines in most applications. The multimedia research
community is constantly trying to simulate the brain’s behaviour to leverage
its innate computational ability. A deep understanding, however, of the human
brain remains one of the greatest scientific challenges. Recent initiatives, such
the Human Brain Project in Europe or the BRAIN Initiative in the United
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States, have identified its exploration as one of the grand challenges of our
time.

Although humans consistently outperform computers in the semantic inter-
pretation of multimedia signals [I1], the computational and storage power of
machines can be scaled and networked dramatically beyond individual human
capacities. These two observations are the foundation of the human compu-
tational technologies, which exploit the best of both by defining collaborative
strategies. The steady decrease in the cost of EEG (Electroencephalography)
systems in recent years has made these non-invasive Brain-Computer Interfaces
(BCIs) accessible beyond the traditional disciplines that typically availed of
this technology [I8.[23]. Visual analysis is one such field, with recent publica-
tions exploring the potential of EEG signals for image retrieval [926125] and
object detection [313].

The use of brain-computer interfaces is, however, still limited, primarily
because the motor (or speech) capabilities of most humans provide richer in-
teraction methods than BCIs. For this reason, many current applications use
BClIs as a secondary interaction source to complement another primary one, or
as a tool for scientists to study human behaviour via EEG analysis [10]. Brain-
computer interfaces, however, have the potential to be enormously beneficial
for seriously impaired people, such as those affected by Locked In Syndrome
(LIS). These individuals are paralysed of nearly all voluntary muscles, so are
disabled from motion and speech. Vision is always intact, although in extreme
cases even eye movement is restricted [I], in which cases BCIs represent the
only opportunity to interact with the world.

Although a controversial discussion topic between neuroscientists, some au-
thors claim to have observed consciousness with EEG devices on patients with
persistent vegetative state [5], which may open a door to some level of inter-
action with them. For these reasons, and as explained in [7], BCI systems hold
great promise for effective basic communication capabilities through machines,
e.g. by controlling a spelling program or operating a neuroprosthesis. The use
of EEGs for these type of assistive technologies has been previously explored
in applications like letter-by-letter spelling [21I] or the control of robots [2[19].

The objective of this work is to demonstrate that BCI interfaces are useful
in tasks beyond spelling out words. We focus here on interaction with multime-
dia: specifically, object selection and segmentation in images. The capacity to
perform such segmentation using a BCI interface potentially has both practi-
cal and creative applications, such as selection of specific objects for similarity
search, and mixing objects from different sources to create a new composi-
tion. We propose a system capable of accurately selecting an object in an
image in a manner that is completely hands-free, using only measured signals
from an EEG interface. In this way, previous work exploring image retrieval
(global image scale) [9,26L25] and object detection (coarse local scale) [3L13]
are extended to a pixel-level object segmentation. This task is addressed by
applying the human computation paradigm, using noisy EEG signals to seed
the well-known GrabCut [22] segmentation algorithm.
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This work extends our previous study [I7] by modifying the EEG process-
ing (i.e using a simple linear SVM kernel instead of RBF kernels for building
the classification models and changing the way to downsample the feature vec-
tors) to significantly improve classification models and the final segmentation.
We also study the effect on the accuracy of our classification models when dis-
playing different percentages of foreground pixels in the target windows and
we also evaluate the quality of our probability maps (EEG maps) with a new
measure proposed in [I5] to evaluate foreground maps. Finally, the segmenta-
tion is performed with 4 different strategies: In the first we directly binarise
the EEG maps and consider the mask as the final segmentation. The second
consists of first filtering and then binarising the EEG maps and consider that
as the segmentation, and the third and fourth consists of using the previous
obtained maps (binarized and filtered) and used them to seed the segmenta-
tion algorithm Grabcut, so we can study the gain in combining our binary
maps with Grabcut.

2 Related Work

Previous works combining BCI and computer vision [9,25,12] have been fo-
cused primarily on image retrieval and object detection. In such work images
are presented to participants according to the oddball paradigm. This approach
consists of presenting a “target” image among many “distractor” images via
Rapid Serial Visual Presentation (RSVP) [24]. Although the presentation rate
of the images is high, around 10Hz, a specific signature in the corresponding
EEG signals is produced when the user observes the target images (or rare
stimulus). This signature is known as a P300 wave and it is a kind of Event-
Related Potential (ERP) associated to the process of recognising a relevant
visual stimulus [I4]. The waves primary characteristic is a positive peak in the
EEG signal typically emerging around 300ms after a target visual stimulus is
observed.

Two previous works describing a BCI system applied to image retrieval
and detection were presented by Wang [25] and Healy [9]. In both cases the
authors perform RSVP of images from known datasets at 10Hz to detect those
images in which a specific object appears. The main difference between them
is that in Wang’s paper the user is not asked to press any additional button
when a target image is seen. Our work differs from these because it focuses
on target windows (or regions) instead of target image detection. The most
similar work to ours is Bigdely-Shamlo’s paper [3], in which satellite images
are explored using local windows to detect those containing airplanes. Bigdely-
Shamlo’s work, however, assumes that the object fits in a single window, while
in our contribution objects are partially represented in an unknown number
of windows.

In this study we do not use eye-tracking due to the high image presenta-
tion speeds employed not allowing time for useful eye movements. It is known,
however, that P3-like responses do exist surrounding deployments of gaze (fix-
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ation) in images and that these can be used to detect local target stimuli which
might not be apparent until after fixation has occurred [g].

3 System Architecture

We propose a system that aims to both detect and segment an object from
an image using P3 brain responses that occur after observing a segment cor-
responding to a target-relevant image region. The idea is to transform the
measured EEG responses into a map that gives an estimate of how probable
it is that a particular region seen by the user contains the target object, and
then to use this map to seed a segmentation algorithm. The construction of
this map is based on EEG signal classification, as the electrical responses of
the brain are known to differ when the user detects a target or rare stimulus
in a RSVP scenario.
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Fig. 1: System overview

Figure [I] illustrates the three primary stages of the proposed system:

1. Data acquisition (Section E[): in this stage we capture the brain signals
related to the visual stimulus.

2. EEG processing (Section : pre-processing and classification are used
to generate the probability maps for the object location. As these maps
are built by using EEG analysis, they will be referred to as EEG maps.
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3. Segmentation (Section @: EEG maps are processed and 4 strategies to
perform the final segmentation are evaluated: The first two consist in bi-
narising and filtering the EEG maps, meanwhile the last two consist in
combining the two different versions of the binary masks obtained to seed
the GrabCut object segmentation algorithm [22].

The following sections of the paper describe each stage in more detail.

4 Data acquisition

This section describes the experimental set-up used to capture the data. First,
a new image dataset was created and each image partitioned in blocks of equal
size. Each of these blocks are presented at a high rate. This stage was validated
with a preliminary test with a single user, an important step before starting
a larger campaign of data acquisition.

4.1 Image dataset

A novel dataset of 22 images was created to run the experimentation described
in this paper. This dataset is publicly available at E Given the exploratory
nature of this work, the images were chosen to include a single object in a
background of limited complexity. The dataset includes different configurations
regarding the color, shape, and texture of the objects, as well as their relative
similarity with the foreground, as shown in Figure [2| Each of the images has
an associated ground truth for object segmentation in the form of a binary
mask.
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Fig. 2: Sample of 10 images of the dataset (first row) and their associated
ground truth (second row). The last two images have been taken from Berkeley
Segmentation Dataset and Benchmark (BSDB) [16].

4.2 Windows presentation

The goal of this stage is the generation of the visual stimuli in such a way that
they generate different and measurable brain responses depending on whether

1 https://imatge.upc.edu/web/resources/eeg-signals-object-segmentation
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Distractor

Fig. 3: Illustration of RSVP to randomly display different regions of an image.

they are related to target object or background pixels. The approach adopted
is based on the Rapid Serial Visual Presentation (RSVP) [24] of the different
windows that compose an image containing an object of interest. The approach
follows the same idea described in the papers for image retrieval using BCI [9]
[25)12] but applied at local scale. This involves partitioning the images into
192 windows and displaying each of them in a fast and random succession
(Figure . Given the homogeneous scale of the objects in the dataset and
the amount of windows, these windows will usually only contain part of the
object. In particular, the adopted ratio generated an average of 15% of windows
containing parts of the object.

A 32-channel ActiChAmp EEG system with a sampling rate of 1kHz was
used to capture EEG. 5 volunteers between 21 and 32 years old participated in
the study. The electrodes were positioned according to the 10-20 system. The
experiment was run in a quite electrically-shielded room. This room isolates
both the participant and recording equipment in order to minimize the influ-
ence of electrical noise sources and other potentially distracting interferences
on the user.

Image presentation in the experiments was carried out as followed. First,
the entire image was displayed to the participant for five seconds. This allows
the user to memorise the visual features of both object and background. Af-
terwards, the 192 windows of each image were presented at a rate of 5Hz. Each
region is shown zoomed and centered on the screen. Preliminary experiments
showed participants attention decreased with time. To minimise this effect, we
asked participants to count the number of windows containing a part of the
object.

4.3 Preliminary experiments
Acquiring EEG data on real users is both laborious and time consuming:

in addition to the time required to actually perform the experiments (ap-
proximately one hour per user), it requires scheduling time with volunteers,
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equipment setup, and precise positioning of the various EEG sensors in a con-
trolled environment. To ensure maximum benefit from each experiment trial,
we decided to carry out a set of preliminary small-scale and simulated exper-
iments. The objective of these experiments were: first, to establish whether
classification of EEG signals with some reasonable degree of accuracy using
our equipment and experiment setup is indeed feasible; second, to determine
whether, given a imprecise classification of an EEG signal for a window, it is
possible to use this to locate and segment the corresponding object from an
image; and third, to guide us in making reasonable choices for the parameters
such as the number and size of windows and their presentation rate. We in-
clude some details on these experiments here for reproducibility and to justify
our design decisions. Positive results at this stage indicated that the system
could indeed be effective and helped underpin the full-scale experiments.

4.8.1 Averaging of targets and distractors

The first study focused on the temporal evolution of the EEG signal in those
cases where this was captured for the presentation of a target or a distrac-
tor window. Given the noisy nature of EEG signals, the observation of any
difference between two individual plots from the two classes is challenging.
Nevertheless, this noise can be reduced by averaging several signals from the
same class and, in this way, distinguish a clear Event Related Potential (ERP)
waveform.

Figure 4] compares the same number of target (left) and distractor (right)
signals captured in one electrode. The time span goes from one second before
the visual stimulus to two seconds after it. The behaviour on the target reac-
tions is different to the distractors, evidenced by a peak around 500ms after
the stimulus visualization, which is clearly noticed in the averaged waveform
across all the target trials.

This first result provided the evidence that the adopted RSVP strategy
was capable of generating different and measurable brain responses for the two
classes of windows. It must be made clear, however, that the future sections in
the remainder of this paper do not apply any averaging strategy on the EEG
signals associated to an image window. All results presented in later sections
are based on the classification the EEG signal obtained with a single trial.

5 EEG Processing

This section describes the processing carried out on the EEG recordings to
extract relevant information to identify the patches of the images in which
part of the relevant object is located. The process contains two main steps:

1. Generating the feature vectors based on the EEG signals to represent each
window.

2. Building a SVM model to predict a score to indicate how likely it is that
a window contains part of a target object.
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Fig. 4: One second before and two seconds after the visual stimulus recorded in
the Pz channel for all participants (grand average). Shown are: the amplitudes
of the brain waves (top), and the averaged values over all the waves for the
target window (bottom-left), and distractor window epochs (bottom-right).

5.1 EEG feature vectors

First, the data was referenced to the average of all the 32 channels and the
frequency rate was reduced from 1000Hz to 250Hz. After that, a band-pass
filter from 0.1Hz to 20Hz was applied and the EEG activity related to one
second before and two after each window presentation were selected (epochs).
At this stage each image had 32 signals of 750 samples. Then, for each of the
32 signals, the period from 200ms to 1000ms was taken as the discriminant
time region to discern between EEG responses of targets and distractors (see
Figure . We selected the activity from 200ms to 1000ms after the stimulus
presentation and we reduced the signal’s sample rate from 250Hz to 20Hz, gen-
erating a 16 sample vector per channel. Each of the 16 samples per channel was
the result of computing the average of 24 samples windows with 50% overlap
between each other, which is a better strategy than linear interpolation of the
signals as this approach has a tendency to be more adversely affected by high
frequency components/noise in the EEG. It is known that lower frequencies
(i13Hz) of the EEG are primarily responsible for the generation of the P300
[. Finally, we build a single feature vector for the image as the concatenation
of the 32 channels, generating a 512-dimension vector per window. The final
feature vectors were normalized using 12 normalization.

5.2 Window classification

A model to predict the regions of interest within an image was generated
for each user. We selected a linear kernel SVM with default parameters for
that task due to the fact that no significant difference in performance was
found when comparing the linear with the RBF SVM kernel used in [I7] (t-
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test, p = 0.814133, sample size= 25) and the computation time was order of
magnitudes shorter.

The EEG data for the 22 images was separated into 17 images for training
and 5 for testing the model. Training and testing images were consistent across
users. Thus, the training set consisted in an imbalanced set of 435 examples
of targets and 2829 examples of distractors, respectively labeled with 1 and 0.
The final model was tested on the separated 5 images, which contained a set
of 130 targets and 830 distractors.

5.3 Evaluation of user performance

The performance of the models is evaluated in terms of Area Under the Curve
of the Receiver Operating Characteristics (AUC-ROC). For each user, we cross
validate the performance of their models by changing the 5 test and 17 train
set of images 5 times (5-CV).

The final user performance is reported in Table[I| using the EEG procedure
in our previous work (Old Pipeline) [I7] but using a linear SVM instead of
a RBF kernel. The procedure adopted in this current paper (New Pipeline)
has shown a significant improvement in performance (One tailed t-test, p =
0.006287, sample size= 25) by increasing the mean ROC-AUC from 0.70 to a
0.79 with respect to the previous models.

Table 1: Mean ROC-AUC over the 5-CV of the models. Values are displayed
with their associated stantard deviation.

User 1 User 2 User 3 User 4 User 5 Mean ROC-AUC

Old Pipeline .65£.02 .73+£.04 .73£.05 .71+£.05 .68£.02 .70%.02
New Pipeline .744+.03  .82+.01 .85+.02 .81£.05 .73+.03 .794.02

5.4 EEG maps

The confidence scores provided by the classifier can be graphically represented
as an image in the form of EEG maps.

This score represents the distance that separates the classified sample from
the hyperplane [20]. Depending on the sign of this distance, the binary classifier
assigns a target or distractor label. The maps are built by normalizing the
values assigned to each window between 0 and 1 according to Equation

;X —min(X) (1)
~ maz(X) — min(X)’
where X’ represents the normalized EEG map and X the original EEG map.




10 Eva Mohedano et al.

Fig. 5: EEG maps for a test set of images. The top row is the original im-
ages and the remaining rows are the generated EEG maps for five different
participants, one in each row. Brighter pixels represent higher probabilities

The EEG maps obtained for the first set of testing images is displayed in
Figure |5l As expected, the quality of the obtained EEG maps depends on the
quality of the SVM models, so that the users with lower AUC also obtained
the visually worst EEG maps (specially notable in the second column in the
Figure [5)).

To quantify the difference in quality between EEG maps, a measure pro-
posed by Margolin et al. [I5] was computed. The authors proposed an novel
method to compare gray scale and binary maps with the ground truth mask.
The proposed measure is a weighted version of the F-score (F,) that, apart
from considering the amount of true/false positives and negatives pixel la-
bels in the foreground mask, also takes into account the relative position and
relevance between pixels. For further information about this measure see [I5].

5.5 Effects of the percentage of foreground in the target windows

The models presented in Section [5.4] have been trained considering all the
windows containing one or more foreground pixels as targets. The approach
is good enough to build a first noisy version of the EEG maps, but it does
not take into account the variety on the kind of targets in terms of percentage
of displayed foreground. For instance, Figure [6] presents an example of three
target windows for a particular image. Although users have previously seen
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Table 2: F,, score for a test set if images (Figur

Image 1 Image2 Image3 Image4 Image22 Avgdstd

User 1 .077 .076 .100 124 .091 .093+£.020
User 2 .080 .082 114 129 .085 .098+.022
User 3 .091 .096 112 119 107 .105+.011
User 4 .097 .097 .105 117 117 .103+£.009
User 5 .065 .066 .090 124 .102 .089+£.025

.

Fig. 6: Thee different target windows for an image that contains a flower as
a target object. The window on the left contains around a 3% of foreground
pixels, the one in the middle a 40% and the one in the right a 100%

the full image, it can be challenging to recognize a window containing just a
small amount of foreground. In the same way, it can also be challenging to
identify the object when the full window is based just on foreground pixels,
without displaying any background. It seems reasonable to think that the win-
dows containing partially object and background in similar proportion are the
ones easier to detect, since they contain a patch of the object big enough to
identify it without loosing the context information of the background.

To quantitatively address this issue, we ran an experiment training differ-
ent models to detect different kind of targets. Specifically, 10 linear SVM were
trained per user considering 10 different percentages of foreground ranges.
(Model n, for n in [1,10] considers foreground pixel percentages between
(10(n — 1),10n]). The EEG signals related to the 22 images of the collec-
tion were used to train and test the models. The performance of the models
was cross-validated 10 times, randomly selecting 30% and 70% for testing and
training in each iteration.

Results in Figure[7]indicate that there is a difference in performance regard-
ing the kind of targets. For all the users, either ranges with small foreground
pixel percentages (less than 10%) or large percentage (more than 70%) per-
form slightly worse than inter middle ranges. Nevertheless, this effect can be
influenced by the amount of available training samples per percentage range
(Figure E[): When increasing the range of the percentage of foreground we
are also decreasing the amount of available positive training examples. Notice
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though that when comparing the 0-10 and 10-20 bins, AUC increases despite
using less training samples. This observation suggests that targets with less
than 10% are indeed hard to identify.

ROC-AUC vs. Percentage of Foreground Object

0.90
4 Userl
4 User2
4 User3
0.85 k4 Userd
4 Users

=N

ROC-AUC

0.65

0-60 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

Percentage of Foreground Object

Fig. 7: Averaged ROC-AUC across the 10-CV iterations for each different per-
centage range. (The error bars are the standard deviation of each distribution.

6 Object segmentation

The EEG maps constructed in the previous section provide local information
about how likely it is to find an object part in each window. The final seg-
mentation requires a post-processing of the EEG maps to obtain a pixel-wise
binary mask of the object location. Two approaches were tried for performing
the final segmentation:

1. Segmentation by thresholding;
2. Segmentation with Grabcut.

The first approach consisted in setting a threshold to directly obtain a
binary mask from the EEG maps and consider it the final segmentation. Ad-
ditionally, this binarization was applied on a smoothed version of the EEG
maps, aiming at reducing noise of the original maps. The second approach
consisted in using the previously obtained binary masks as seeds for the well-
known Grabcut segmentation algorithm [22].
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ROC-AUC vs. Percentage of Foreground Object

0.90

0.80 /'—-\—..—-!--\\\1
\

ROC-AUC
o
~
[

0.70

060 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

Percentage of Foreground Object

Fig. 8: Averaged ROC-AUC across the 10-CV iterations for each different
percentage range. Results are averaged across all the users. The error bars are
the standard deviation of each distribution.
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Fig. 9: Number of target training samples per percentage of foreground pixels
range in the 17 set of training images.

For both procedures, EEG maps are generated after training the SVM
model on 17 images. In this section results are reported considering always
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the same 17 and 5 images for training and testing. Nevertheless, in the final
section we also cross-validate the performance of the system repeating the
whole pipeline for different data splits into training and test. This allows us
to generate the segmentation for all the images of the collection and also to
validate the overall system performance. The different values for the segmen-
tation parameters were learned on these training images based on the average
performance of the 17 processed EEG maps.

The quality of the segmentation was evaluated with the Jaccard Similarity
Index, a popular metric for object segmentation used, for example, in Pascal
Visual Object Classes (VOC) Challenge [6]. This measure evaluates the sim-
ilarity between the final segmentation and ground truth masks. The Jaccard
Index has values between 0 an 1, with 1 the maximum similarity between the
masks. The measure is defined as the intersection of the two final binary masks
divided by the union of both masks:

ANB
AUB @)

where A is the segmentation mask and B is the ground truth mask.

J(A,B) =

6.1 Segmentation by thresholding

In this subsection we describe the procedure of generating binary masks from
the EEG maps obtained in Section

6.1.1 Binarizing the EEG maps

The simplest strategy to quantitatively assess the EEG maps in terms of object
localization is to directly convert them into a binary mask. Such binarization
is achieved by setting a threshold «, which will consider as targets all those
pixels in the EEG map which are higher than «, and label as distractors all the
rest. An optimal binarization threshold «; was estimated for each individual
user ¢ by averaging the a; ; values that provided the highest Jaccard index for
each training image I;.

o, ; = argmin J(M; (o), GT;) (3)

where M; ; is the EEG map thresholded by « for user ¢ and image I;, and
GTj is the ground truth mask for image I;.

Visual results for this approach are presented in the left part of Figure
It is possible to see a high density set of windows labeled as target around the
object location, especially for user 4.

Table [3| contains optimal thresholds to binarise the images of the test set,
learned from the 17 EEG maps of training. It also contains the averaged Jac-
card for the test set. In total, the approach provides a global Jaccard of 0.22,
which points at the poor performance of a direct binarization on the EEG
map.
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Table 3: Final threshold per user obtained from the EEG maps for training
and the final average value obtained applying the threshold on the test set.
The Jaccard Index reported is the average of the 5 Jaccard indices of the test
set, with their standard deviation.

User 1 User 2 User 3 User 4 User 5 Mean User

a .68 .67 .66 .69 .64 .67+.02
J 18%+.09 .22+£.07 .284.07 .28+£.08 .15+.08 .22£.09

6.1.2 Filtering and binarization of EEG maps

The binarization approach presented in the previous section presents a first
limitation because of the block artefacts introduced by the window boundaries.
The window contours do not need to match with the object ones, so in general
this lack of resolution is partially responsible of the bad performance of the so-
lution. In addition, the spatial relationship between the windows is completely
ignored, without any contextual analysis that may provide coherence to the
overall composition.

In this section, a low-pass filter is added before thresholding the maps to
reduce block artefacts. With this filter, the isolated false positive windows of
the background can be reduced and the high compact windows around the
object will mutually reinforce. Equation describes the filter mask (kernel)
that is convoluted with the image. The (z,y) values are the horizontal and
vertical distances from the origin to a certain point of the kernel. The kernel
takes standard deviation o as a parameter defining the spatial extension of
the filter:

1 z? +y?
6(e.9) = g enw (-5 ) 0

The Gaussian filtering and posterior binarization of the resulting EEG map
requires defining the two parameters a and ¢. As in the previous section, these
were selected via minimizing the error over the training dataset. In this case,
though, the Gaussian filtering changes the dynamic range of the EEG maps,
which is no longer between 0 and 1. For this reason, the binarization threshold
is not learned as an absolute value but as a normalised coefficient p € [0, 1]
with respect to the dynamic range of the EEG map:

a; j(p) = min(F; j) + p - (max(F; ;) — min(F; ;)), (5)

where F; ; the filtered EEG map of user ¢ for image I;.

The procedure used for optimisation was to select the parameters (o, a)
that generated the maximum averaged Jaccard Index over all the images of
the training set. 70 values for sigma (o € [0, 70]) were tested to filter the EEG
map. For each filtered map, 100 different values were tried by varying p from
0 to 1, and the binarization threshold «; ; that maximized the Jaccard was
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selected, as previously presented in Equation . Then, for each image an
optimal combination (¢, ) that maximized the Jaccard was obtained. Finally,
the parameters used in the test set were obtained by averaging the 17 pairs of
optimal parameters computed for the training set.

The new binary masks shown in the right part of Figure present in
many cases a single patch located near the actual position of the object, with
a shape which is much more natural than the sparse blocks generated in the
left half of Figure[I0] Quantitative results are presented in Table[d We can see
that, by filtering the maps, it is possible to nearly duplicate the quality of the
final segmentation, obtaining an average Jaccard of 0.43. The reason is that it
is possible to filter the noise introduced by the windows and, after binarising,
a more accurate location and shape for the target object can be obtained.

Table 4: Averaged percentage (normalized to one) and o per user obtained
from the train set and final Jaccard index obtained on the test set by using
these parameters.

User 1 User 2 User 3 User 4 User 5 Mean User

a .76 .76 .76 .72 .79 .75£.02
o 2447 22.47 21.18 18.88 25.59 22.5242.66
J .35+.22  .51+£.23 .51%+.14  49+£.11  .29+.18  .43£.19

W

Fig. 10: Binary mask after filtering and thresholding the EEG maps. On the
left, the the EEG maps thresholded, and on the right the EEG maps filtered
and thresholded. Each row represent the final masks per user. First and second
row are the original images and their ground truth masks.
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6.2 Segmentation by Grabcut

The results obtained in the previous sections, based only on EEG data, already
provide in many cases a rough estimation of the object location. The config-
uration explored in this section explores the synergy between BCI data and
computer vision algorithms. The EEG maps (both the original and the filtered
version), once they are binarised, can be used to seed an object segmentation
algorithm that can exploit the spatial dependencies between neighbouring pix-
els. This way the computer vision algorithm is guided by the user in a noisy
and approximate fashion.

The segmentation algorithm adopted in our work is GrabCut [22]. This
technique performs a segmentation of an image based on a rough initial label-
ing defined by the user, typically by drawing a box around the target object.
The pixels outside the box are initially considered as background and the
pixels inside as unknown. GrabCut separately models the pixels labeled as
background and the ones labeled as unknown by using a Gaussian Mixture
Model (GMM). The unknown pixels are considered foreground pixels in the
first iteration. Then, the two GMMs obtained are used to solve a minimiza-
tion problem via min-cut and produce a first segmentation of the object. After
the initial iteration, with the new labels for background and foreground, the
GMDMs are updated and the process is repeated until converge on the final
segmentation. Our proposal here is to replace the drawn rectangle for the bi-
narised EEG maps, where the white pixels and black pixels are the seed for
foreground and background from where the algorithms start the optimization
process.

Table [5| shows the final Jaccard when using the maps as a seed for Grabcut
using the implementation included in OpenCV [4]. We found that by adding
Grabcut to the pipeline it is possible to, on average, increase the accuracy on
the final segmentation by 0.33 and 0.19 compared to the binarized and fil-
tered and binarized maps, respectively. We note that even though the quality
of the seed maps is different, the filtered version is significantly better than
just binarizing the EEG maps (t-test, p < 0.00001, sample size= 125). When
the maps are used with Grabcut, the final segmentation is similar, and also
presents a high variance due to the fact that some images perform significantly
better than others. We also include results when using Watershed algorithm
instead of Grabcut with our best version of the binary EEG maps (Filtered
version). We used the openCV implementation of the algorithm, setting the
kernel for the erosion/dilation of the binary maps to 7x7 pixels and perform-
ing 3 iterations for each morphological operation to set the foreground and
background markers. Unlike adding Grabcut to the pipeline, results show that
when adding the Watershed algorithm the final segmentations did not present
any significant gain, obtaining an equivalent Jaccard Index the one obtained
by just using the Filtered maps.
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Table 5: Jaccard Index when using the binarized and filtered and binarized
EEG maps as a seed for Grabcut

User 1 User 2 User 3 User 4 User 5 Mean User

Binarized A8+£.09 .224+.07  .28+£.07  .284+.08 .15£.08  .224.09
Filtered .35+.22 .51+£.23 .51£.14  49+.11 .294+.18  .43%.19
Binarized4-Grabcut b51+.42  70+£.40 .79£.21  .68+39 .50+.44  .63+.37
Filtered+Grabcut .54+.40  .76+£.21  .69£.22 7722 .57+.30 .67+.27

Filtered+Watershed  .384+.19  .52+.18  .56+£.18 .50£.18  .354+.20 .46+.18

7 Results

This section presents the results obtained when processing the presented the
image dataset separately for each user, as well as combining their interaction
to generate a higher quality segmentation.

As the number of images for testing the system is limited, a cross-validation
is performed by switching the images in the test and training set 5 times and
obtaining in this way the segmentation of all the dataset. That means that 5
different systems are generated following the described pipeline, where the 5
testing images are always independent from the training set.

7.1 Single user object segmentation

The averaged Jaccard Indexes per image are presented in Figure In gen-
eral, processed EEG maps obtain 0.20 £ 0.10 and 0.43 4 0.18 for the thresh-
olded and filtered and thresholded (Binary and Filtered) versions, respectively.
When adding Grabcut, performance increases to 0.55 + 0.4 and 0.66 + 0.32.
Although due to the high variability across images, this difference is not statis-
tically significantly (t-test, p = 0.27792, sample size=125) which suggests that
both processed versions perform similarly when combined with Grabcut, even
though filtered versions are more accurate than the ones only thresholded.

Figure [T2] presents the visual segmentation for five examples, as well as
the intermediate stages. These results show that it is possible to successfully
classify the brain response produced to detect different parts of a target object,
and to produce useful information based on the EEG waves to locate the target
object in the images.

Despite that Grabcut, in general, improves the segmentation obtained by
the Binary and Filtered versions of the EEG maps, the algorithm not always
improves results or, if there is an improvement, the final results are far from
being the optimal ones. Figure illustrates this effect for some images pre-
sented to user 3. Table [] contains the Jaccard Index on the different steps of
the processing. If we focus on the rows 2 and 3 of the Figure [13] one could
think that, in the case of the Binary maps, the maps are too noisy to be used
as a seed for Grabcut and that would be the reason of the low performance of
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Fig. 11: Average Jaccard index across users per image

the algorithm. Nevertheless, for the same images, the Filtered versions repre-
sent a decent estimation of the object location and Grabcut still performing
poorly. This fact evidences that the algorithm does not perform well when
colors and textures of the foreground objects are similar to those composing
the background, independently of the quality of the binary maps used as a
seed for the interactive segmentation algorithm.

Table 6: Jaccard Index for images of Figur

imagelD  Binarized Binarized+Grabcut  Fliltered Filtered+Grabcut

15 .16 .29 .53 41
19 .21 .03 .36 .02
18 11 .07 .30 .08
21 17 .00 .31 .65
22 .19 A7 41 47

7.2 Combining EEG maps of different users

To reduce the noise of the EEG maps, we computed a single map per image
by averaging the EEG maps of the different users. The parameters are set by
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Fig. 12: Segmentations obtained when using Grabcut for user 3 in the second
iteration of the crossvalidation. On the left, segmentations obtained by thresh-
olding, on the right segmentations obtained by filtering and thresholding.

Fig. 13: Example of bad segmentations for user 3.

averaging across iterations and users. The threshold value for the binary EEG
maps is 0.65 and for the filtered is 0.75 with gamma parameter of 22.52.
Qualitative results of the averaged EEG maps provide evidence that by
combining the individual maps of different users it is possible to generate
cleaner EEG maps (Figure . With the EEG maps averaged across users,
we duplicate the quality of the binary maps: for the binary maps, we obtain a
Jaccard value of 0.40 £ 0.12 versus the 0.20 + 0.10 previously obtained. Also,
for the filtered and binarized maps we obtain a Jaccard Indexes of 0.57 +
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0.12 versus the previous 0.43 £ 0.18. When adding Grabcut both versions
perform similar, obtaining 0.70 4+ 0.30 and 0.73 4+ 0.27 for the binary and
filtered masks versions respectively. These results are slightly better than the

previous Grabcut results when processing users separately (0.55 &+ 0.4 for the
binary EEG maps and 0.66 & 0.32 for the filtered EEG maps).

“ri
-

Fig. 14: Obtained results when using averaged EEG maps for user 3 in the
second iteration of the system cross-validation.

8 Conclusions and future work

This work has presented and extended our previous publication [I7] to seg-
ment objects from images by analysing EEG-signals in an attentional oriented
task. Results indicate that a saliency map of the image can be estimated by
partitioning it into windows and displaying them in a Rapid Serial Visual
Presentation. The techniques presented in this paper have improved both the
individual classification of the image windows and the final Jaccard index.

Firstly, by replacing the RBF kernel of the SVM classifier for a linear one,
to improve the classification of the windows into containers or not containers
of the object. This change already increased the mean classification ROC-AUC
from 0.70 to 0.79.

Secondly, the initialization of the GrabCut segmentation algorithm has also
been simplified. While three types of seeds (definitely background, possible back-
ground and possible foreground) were used in [I7], now only two only labels
(possible background and possible foreground) were considered. This changed
combined with the linear SVM kernel, has increased the average Jaccard index
from 0.47 to 0.66.
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The paper also presented a detailed study showing that higher detection
rates were obtained on windows containing an object occupation between
10% — 70%. In addition, all results have also been carefully analysed by means
of t-scores from statistical analysis.

This study offers a new communication opportunity to those patients af-
fected by the Locked In Syndrome, which have no other way for interaction
than brain activity. A segmentation system like this, even if imperfect, may
allow these users to point at regions of interest in natural images such as their
view field.

Future work should address more complex situations where multiple salient
objects are present in the image to explore whether the simple foregorund-
background pixel classification can also be extended to a multi-instance case.
While it seems clear that the system can precisely locate the saliency parts
of a natural image, it is still an open question if it could discriminate among
them.
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