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Abstract - Detection of duplicated regions in digital images has been a highly investigated field in 

recent years since the editing of digital images has been notably simplified by the development of 

advanced image processing tools. In this paper, we present a new method that combines Cellular 

Automata (CA) and Local Binary Patterns (LBP) to extract feature vectors for the purpose of 

detection of duplicated regions. The combination of CA and LBP allows a simple and reduced 

description of texture in the form of CA rules that represents local changes in pixel luminance 

values. The importance of CA lies in the fact that a very simple set of rules can be used to describe 

complex textures, while LBP, applied locally, allows efficient binary representation. CA rules are 

formed on a circular neighborhood resulting in insensitivity to rotation of duplicated regions. 

Additionally, a new search method is applied to select the nearest neighbors and determine 

duplicated blocks. In comparison with similar methods, the proposed method showed good 

performance in the case of plain/multiple copy-move forgeries and rotation/scaling of duplicated 

regions, as well as robustness to post-processing methods such as blurring, addition of noise and 

JPEG compression. An important advantage of the proposed method is its low computational 

complexity and simplicity of its feature vector representation. 

 

Keywords - Copy-move forgery, Duplicated regions, Cellular Automata, Local 

Binary Pattern, Digital image forensics 
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1. Introduction 

Digital images are nowadays commonly used thanks to the simplicity of their acquisition, 

sharing, storing and editing. Many advanced processing tools allow editing of digital image 

content without any visible traces, leading to the fact that digital images cannot be trusted any 

more [1]. Copy-move forgery (CMF) is one type of digital image forgery methods in which part of 

an image is selected, copied and moved to a new location in the same image [2] with the aim of 

adding or hiding an object. Digital image forensic [3], whose goal is to distinguish edited images 

from original images and discover any changes of image content, has two common approaches in 

the field of CMF detection. Active methods require the embedding of some information in the 

digital image in the process of its creation, such as digital signatures or watermarks [4]. Passive 

methods, on the other hand, do not require any additional data since they are based on analyzing 

properties of the image [5] such as sensor noise, illumination, statistical properties, etc. Many 

different passive approaches were proposed for CMF detection based on defining feature sets of 

small, overlapping blocks of the image [6-16] or key points [17-19]. 

A detection method based on Local Binary Patterns (LBP) [20] was introduced by Li et al. [15]. 

This approach was extended with Multi-resolution LBP (MLBP) [16]. The method showed good 

performance in the case of rotation, scaling, JPEG compression, blurring and noise addition. 

However, use of MLBP for feature set generation leads to large feature sets. To reduce the 

complexity of feature sets, 1D Cellular Automata (CA) [21] are used to generate feature sets as a 

binary array representing CA rules [22, 23]. 1D CA implies using pixels from one row of an image 

to learn the pixel’s value in the next row of the image. However, the method was sensitive to 

rotation of duplicated regions due to the use of 1D neighborhoods and showed weak robustness to 

post-processing methods due to the applied search method based on lexicographic sorting. 

This paper presents a new idea of combining LBP with CA for the purpose of CMF detection 

based on circular neighborhoods. Prior to the detection process, an image is divided into small, 

overlapping blocks. A circular neighborhood is formed for each block by defining circles of 

different radii around the block’s central pixel and by sampling points on those circles using 

bilinear interpolation. The sampled points are used to form small neighborhoods in such a way that 

points from one angle are used to learn point value on the next angle. However, use of point values 

as an input to CA leads to a combinatorial explosion in the number of possible rules. To cope with 

that, a reduced description of point values based on LBP is applied locally on every neighborhood 

in each block. The feature vector is defined as a binary array where each element describes the use 

of a specific binary pattern. Furthermore, the Fast Library for Approximate Nearest Neighbors 

(FLANN) [24] is used to select nearest neighbors for every feature vector allowing better 

performance of the post-processing methods. A new search method based on analysis of spatial 

relationships between detected blocks is applied to identify real duplicated block pairs. 

The rest of the paper is organized as follows. In Section 2, the brief background about cellular 

automata and local binary patterns is given. Section 3 presents a new approach with explanation of 

feature vector forming and detection method. Testing setup is given in Section 4 and experimental 

results are presented in Section 5. The conclusion is provided in Section 6. 
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2. Background 

In this section, a brief introduction to cellular automata and local binary patterns is given to 

illustrate their role in texture description for the purpose of CMF detection. 

2.a Cellular Automata 

 A cellular automaton [21] is a discrete system containing a regular grid of cells whose states 

can be in only one finite-state set. The use of CA for image processing is interesting because of its 

property that very simple CA rules can result in very complex behavior, so it can be used for 

texture description.  

A CA can be presented by a quadruple <C, S, N, f> where C is a d-dimensional cellular space that 

consists of c cells, S is an s-value state space, N is an n-cell CA neighborhood, and f:Sn → S is a 

cell-state transition function [25]. Each observed cell co is in one finite state so determined by the 

states of a surrounding neighborhood of cells N(co), usually spatially close to the cell co. The state 

of each cell in the next time step is defined using a transition function f, which can be represented 

by a set of rules. Each rule defines the next state of the observed cell co by analyzing all possible 

combinations of neighborhood cells' values, called neighborhood patterns, and assigning a new 

state so to the cell co (1). 

 
oono scssscN == then},...,,{)(if 21  (1) 

Application of CA to digital images is possible using the following hypothesis: 

 Set C is a 2-dimensional image that consists of X × Y pixels (each pixel pi is one cell ci so cell c 

will be marked with p), 

 Set S contains all possible pixel values (s = 256 for 8-bit images or s = 2 for binary images); 

 Set N(po) is an arbitrarily selected group of n pixels spatially close to the observed pixel po, 

 Function f is defined by a set of rules in a way that it represents the connection of a pattern in 

the selected neighborhood N(po) and the value of the observed pixel po. For example, rule 0 

means that all combinations of neighboring elements (sn possible patterns) result in value of 

the observed pixel po equal to 0 (more details in subsection 3.a). 

By analyzing an image or region, it is possible to select a subset of s
n possible patterns 

(combinations of neighboring elements) that describes local changes of pixels’ luminance values, 

e.g. it is possible to define a rule that can be used to generate a specific texture. Detection of 

duplicated regions is based on the fact that similar areas in an image should produce similar rules. 

2.b Local Binary Pattern 

 Local Binary Pattern (LBP) [20] is a simple texture descriptor that transforms an image into a 

set of labels that describe the appearance of the image luminance values. A very important 

property of LBP, which is based on a local pattern and texture, is gray-scale invariance.  

The LBP of neighborhood P and radius r is obtained by using the value of a central pixel pc as the 

threshold to define the values of the neighborhood pixels pn located within radius r around the 
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central pixel pc. Binary values of neighboring pixels are weighted by powers of two and summed 

to form a decimal number stored on the location of a central pixel pc (2). 
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Applying a CA on a gray-scale image implies using a whole range of image intensities as cell 

states (s = 28 = 256) leading to a large number of possible patterns (sn 
= 256n) and even larger 

number of possible rules. For illustration, use of a CA neighborhood of n = 7 pixels results in 2567 

possible patterns. A proper binary representation ensures that only two values (0 and 1) are used as 

cell states (s = 2), leading to a reduction of the possible patterns to 27 for a neighborhood of n = 7 

pixels. 

Although LBP treats regions locally, the representation still has 2P LBP values so it is 

inappropriate as an image representation for CA. However, the main idea of local thresholding of 

image values according to a central pixel is mapped to the task of dealing with values of CA's 

neighborhood pixels as described in subsection 3.a. 

3. Proposed Method 

The proposed method combines CA and LBP for description of image texture, e.g. it focuses on 

local changes in pixel luminance values. The CA rules (feature vectors) are formed by analyzing 

binary patterns on a circular neighborhood and are used as a reduced texture description. Binary 

values are accomplished using LBP locally on every CA neighborhood.  

Detection of duplicated image regions using the proposed method is done through the following 

steps: 

 Pre-processing - Conversion of the image to gray-scale space is performed to adjust the 

image for the detection process. 

 Image subdivision - Division of the image with a block of size b × b pixels is done to define 

small, overlapping blocks. Due to the fact that sliding by one pixel is used, dividing an X ×Y 

image with a b × b block gives Z blocks in total (3). 

  )1)(1( +−+−= bYbXZ  (3) 

 Feature vector forming - A description of every block, based on local changes of luminance, 

is accomplished by combining CA and LBP (see subsection 3.a). A feature vector fvi of size 

s
n for each block i, iϵ{1, ..., Z} is calculated and stored in matrix F (4). 

  )}(),...,2(),1({ n
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 Detection - Feature vectors fvi from matrix F are analyzed to detect block pairs with most 

similar feature vectors (see subsection 3.b). 

 Result generation - Detected pairs of blocks are marked as duplicated regions and 

morphological operation are used to improve detection results. 
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3.a Forming Feature Vector 

After image pre-processing and subdivision, every defined block is analyzed separately with the 

goal to describe local changes in pixel luminance values using a reduced set of patterns. Those 

patterns actually represent the relationship between spatially close pixels, called neighboring 

pixels, and the observed pixel. The main idea is to determine the frequencies of particular pattern 

occurrences and represent them as simple as possible. Automatization of this process is possible 

using pixel values as input to the CA, which results in a description of generated patterns by CA 

rules. 

In the case of 1D CA, neighborhood patterns are formed using pixels from two neighboring rows 

of an image. Therefore, the neighborhood of n pixels from one row of an image and the observed 

pixel from the next row of an image (at half the length of the neighborhood) is used to define the 

pattern and to form a CA rule. Table 1 represents a few 1D CA rules R for all possible 

combinations of neighborhood patterns N(po) on a binary image. In the presented example, a 

neighborhood of n = 3 pixels above the observed pixel po are selected and s = 2 for a binary image 

so there are s
n = 23 = 8 binary neighborhood patterns N(po). Moreover, there are s8 = 28 = 256 

possible rules R with values from 0 to 255. A rule's value defines the value of the observed pixel po 

for all possible neighborhood patters N(po) (Table 1) and is used as a reduced feature vector fvi. 

Note that a higher number of neighborhood pixels results in more neighborhood patterns and more 

rules. 

Table 1. Examples of a few CA rules R for all possible neighborhood patterns N(po) on a binary 
image with neighborhood of n = 3 pixels. The value of rule R transformed into binary indicates the 
value of the observed pixel po for all possible binary combination of neighborhood patterns. Rule 

R = 0 means that the value of observed pixel po is equal to 0 for all possible combinations of 
neighborhood patterns N(po). 

 

The main issue in describing a block’s texture by 1D CA is its sensitivity to rotation of a 

duplicated region. To assure rotation robustness, we introduced a circular neighborhood, e.g. j 

circles of radius rj with the origin at the block’s central pixel pc are formed. A set of m points is 

selected on each circle, located on radius with angle αi = i·360/m, iϵ{1,2,...,m} (note that CA cells 

c are represented by m points in this case so mark m will be used instead of c). Points are sampled 

from the image by bilinearly interpolating the closest four pixels. On circles with smaller radius a 

Rule R = 0 (binary: 00000000) 

Neighborhood pattern N(po) 111 110 101 100 011 010 001 000 

Value of the observed pixel po 0 0 0 0 0 0 0 0 

Rule R = 60 (binary: 00111100) 

Neighborhood pattern N(po) 111 110 101 100 011 010 001 000 

Value of the observed pixel po 0 0 1 1 1 1 0 0 

Rule R = 124 (binary: 01111100) 

Neighborhood pattern N(po) 111 110 101 100 011 010 001 000 

Value of the observed pixel po 0 1 1 1 1 1 0 0 

Rule R = 255 (binary: 11111111) 

Neighborhood pattern N(po) 111 110 101 100 011 010 001 000 

Value of the observed pixel po 1 1 1 1 1 1 1 1 
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smaller number of points is defined (e.g. m = 8rj) so the defined set of points is extended using 

linear interpolation to get the same number of points on every circle.  

The selected set of points from each of the circles is transformed into columns so rule learning can 

be done using points on the circumference. Therefore, the value for observed point mo in row i, 

e.g. on radius with the angle αi = i·360/m, is defined using neighborhood N(mo) from row i-1, e.g. 

on radius with the angle αi-1 = (i-1)·360/m. 

On the transformed set of points, the CA neighborhood N(mo) is defined for every point mo as a set 

of n points from the row above the point mo. One point straight above mo and an equal number of 

neighboring points from both sides of that point is selected as the neighborhood according to 

equation (5), where we use mx,y to represent the point mo at position (x, y).  
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The difference between 1D CA and circular CA is illustrated in Fig. 1. 

For every CA neighborhood, the mean value is calculated using the value of the point mo and the 

values of all pixels from the neighborhood N(mo). Hereafter, we will use mo/mi to represent both 

the value of the point mo/mi and the point itself without confusion. Thresholding based on the LBP 

method is applied to obtain binary representation by assigning every point mi a binary value bi. 
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 (a)  (b) 

Fig. 1. Texture description using Cellular Automata for one block in an image: (a) 1D CA: n 

points in one row of an image (neighborhood N(po)) is used to learn the value of the observed pixel 

po it the next row of an image (at half the length of the neighborhood), (b) Circular CA: j circles 

are formed with radius rj; m points is sampled on every circle by bilinearly interpolating the closest 

four pixels; the set of points at each circle is extended using linear interpolation and transformed 

into columns; rule learning is done using points from one row (at angle αi-1 in the circular 

neighborhood) to form neighborhood N(mo) for an observed point in the next row (at angle αi in 

the circular neighborhood). 

 

After defining binary values, the fast rule identification method proposed by Sun et al. [25] is 

applied to generate a pattern that describes the relation between each point mo and its 
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neighborhood N(mo). The defined binary values bi are used as an input to the transition function f 

but the neighborhood selection step from Sun et al.'s method is not required since a fixed 

neighborhood size is used for each pixel. A feature vector fvi is formed as a CA rule by setting the 

value at its location l to 1 or 0 if the number of points with bo = 1 is greater or less than that with bo 

= 0 for the specific pattern N(bo) related to l as defined below,  

 


 =≥=

=
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)}( patternfor  0{)}( patternfor  1{,1
)( 0000 bNbbNb

lfv i  (7) 

 ))((bi2de obNl =  (8) 

where |.| denotes the cardinality, N(bo) is the binary representation of the neighborhood N(mo), and 

bi2de is the binary-to-decimal function. 

The feature vector fvi generated by the described method represents one CA rule R, so it contains 

2n values. Each value in the feature vector represents use of a specific neighborhood pattern N(bo), 

and location l in the feature vector converted in the binary form represents that pattern (Fig. 2). 

Use of each pattern in a rule can be: 

 1 - most times when the pattern N(bo) appears, the value of point mo is 1, 

 0 - most times when the pattern N(bo) appears, the value of point mo is 0. 

 

Fig. 2. Example of forming a feature vector (for one block in an image): each binary pattern N(bo) 

is analyzed separately; location l is determined by conversion of binary pattern N(bo) to decimal 

number; the value at location l is set to 1 or 0 if the number of points with bo = 1 is greater (equal) 

or less than that with bo = 0. In this example, binary pattern bo = 0000000 at location l = 0 appears 

more often in the case when bo = 0, therefore fv(0) = 0. Elements at other locations in feature 

vector fv are determined in the same way. 

3.b Detection process 

Having in mind the large number of overlapping blocks (Z), brute force searching for 

duplicated blocks would be highly time consuming, and therefore inefficient. The described 

feature vectors have an important property - each element shows use of a particular binary pattern 

and therefore has the same level of importance for the description of texture. Use of a sorting 

algorithm which gives higher importance to some elements in a feature vector (e.g. lexicographic 
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sorting) is not suitable for this problem, so selection of similar feature vectors is done using a kd-

tree. Due to the fact that feature vectors contain only binary values, FLANN [24] is used to find 

the k most similar feature vectors for all the feature vectors (i.e. k most similar blocks for every 

defined block in an image). 

The set of Z × k detected feature vectors is further analyzed to select real duplicated blocks by 

comparing every feature vector with its k nearest feature vectors. First, feature vectors are 

compared by calculating the Euclidean distance v between values of two feature vectors fvi, fvj (9), 

and pairs with distance v smaller than threshold Ts are selected.  
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Analysis of Euclidean distance v allows removal of all blocks that differ in more than Ts binary 

patterns. Furthermore, spatially close blocks (especially partly overlapping blocks) usually have 

very similar texture and should be omitted from further analysis. Euclidean distance d between 

blocks' coordinates (xi, yi) and (xj, yj) is calculated, and pairs fvi, fvj with a distance d (10) higher 

than distance threshold Td are selected.  

 ( )
dijij Tyyxxd >−+−= 22 )()(  (10) 

The remaining set of detected block pairs is reduced by analyzing the shift vector between blocks, 

since two neighboring blocks need to be copied to two other neighboring blocks. Therefore, block 

pair fvi, fvj is marked as duplicated if at least ns spatial neighbors of block fvi are copied to any ns 

spatial neighbors of block fvj. Mathematical morphology is applied on the generated resulting 

image to remove small regions and smooth detected areas using opening. 

4. Testing Setup 

 To analyze the performance of the proposed method 80 plain CMF examples and 80 rotation 

CMF examples from a recent benchmark database called CoMoFoD is used [26]. All images are 

post-processed by applying JPEG compression, noise and blurring, making total of 1360 images. 

Every forgery example consists of an original image (without any forgery), a forged image (with a 

forgery) and two masks (colored and black/white) that indicate the forgery. Images in the 

CoMoFoD database are 512 × 512 pixels, and all forgeries are generated using a Photoshop tool. 

The advantage of this dataset is that it contains examples of forgeries with different sizes of 

duplicated regions, homogenous/heterogeneous areas and cases of multiple forgeries. Thanks to its 

small image size, the database is adequate for fast and efficient testing of different detection 

approaches. 

Parameters used for implementation of the proposed method are given in Table 2.  

A larger block size b makes it impossible to detect duplicated regions smaller than (b+1) × b 

pixels. However, a smaller block size results in a larger number of overlapping blocks. Therefore 

block size is selected having in mind different sizes of duplicated regions and the computational 

complexity of a proposed method. Note that circles are formed with radii rj to increase the number 
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of circles in block b × b and to ensure a sufficient number of samples for a better description of the 

block pattern.  

Table 2. Parameters used for implementation of the proposed method 

 

Values of threshold Td, number of circles j, radii rj, number of points m and size of a disk element 

for morphological operations are selected according to block size (Table 2). 

Similarity threshold Ts is experimentally determined by selecting 10000 blocks of size b × b from 

10 images. On each block, transformations (scaling with different factors and rotation with 

different angles) and post-processing operations (blurring, addition of noise and JPEG 

compression) are applied. CA rules are obtained for all variations of each block by the process 

described in subsection 3.a. Results showed that most rules for the same block differ in less than 7 

elements so threshold Ts is set to 7. 

The same experiment showed that in the case of post-processing and transformations, spatially 

close blocks have more similar rules than real duplicated blocks. Therefore we set k = 4 to select 

four blocks with similar rules for further analysis.  

The number of spatial neighbors ns defines that at least two neighbor blocks have to be grouped to 

form duplicated areas. 

To evaluate the performance of the proposed method, precision P, recall R and F-measure F are 

calculated at the pixel level for every image: 

 
RP

PR
F

FT

T
R

FT

T
P

np

p

pp

p

+
=

+
=

+
=

2
,,  (11) 

where Fp is the number of false positive pixels (mistakenly detected as copied), Fn is the number 

of the false negative pixels (mistakenly detected as not copied), and Tp is the number of the true 

positive pixels (correctly detected as copied). 

5. Detection Results 

The accuracy of CMF detection is tested for plain CMF, multiple CMF, rotation of duplicated 

regions and three common types of post-processing: blurring, addition of noise and JPEG 

compression.  Plain CMF refers to forgery where a part of an image is copied and translated to a 

new location in the same image without changing any properties. Multiple CMF refers to a case 

when one or more regions are copied to different locations in the same image. 

Parameter Symbol Value 

Block size b 13 
Similarity threshold Ts 7 
Distance threshold Td = floor(sqrt(2b2)) 18 

Number of nearest neighbors k 4 
Number of spatial neighbors ns 2 

Number of circles j = (b-1) 12 
Radii of circles rj=1/2, 1, 3/2, …, (b-1)/2 1/2, 1, 3/2, …, 6  

Number of points on each circle m = 82rj 8,16, …, 812 
Radius of disk element for 

erosion and dilatation 
rmorp 3 
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The authors in [2] evaluated 13 block-based and two keypoint-based methods for CMFD. Among 

all tested methods, the DCT [6], PCA [14], Zernike [12] and SURF [17, 18] methods gained the 

best results in most tested scenarios so the proposed method is compared with those four methods. 

5.a Plain CMF 

  Figure 3 shows the detection results for plain CMF. The accuracy is quite high for all 

presented cases (F > 0.92) showing that the method is capable of detecting duplicated regions of 

different sizes and shapes. Figure 3a and 3c illustrate that the proposed method can deal with 

repetitive image content. Figure 4 contains examples of multiple CMFD when one region is copied 

to different locations (Fig. 4a and 4b) and different regions are copied to different locations (Fig. 

4c and 4d). Detection is satisfactorily accurate for all images leading to the conclusion that the 

proposed method can deal with multiple CMF. Additionally, Fig. 4a presents successful detection 

of duplicated homogeneous regions (F = 0.9847). The lowest F-measure (among all tested images) 

is achieved in the case when the copied region is very small with respect to the whole image (e.g. 

the signs’ stands in Fig. 4c). 

    

(a) 360 pixels, 

F = 0.9946 

(b) 1651 pixels,  

F = 0.9005 

(c) 2122 pixels, 

F = 0.9206 

(d) 15478 pixels, 

F = 0.9631 

Fig. 3. Detection of plain CMF for different sizes of copied regions  

    

(a) F = 0.9847 (b) F = 0.9392 (c) F = 0.7105 (d) F = 0.9131 

Fig. 4. Detection of multiple CMF: one region on two locations (a, b) and different regions on 

different locations (c, d) 

Results for 40 examples of plain CMF are shown in Fig. 5. Results for original images are omitted 

because all methods correctly detect all 40 images (F ≈ 1 in all cases). For almost all images, the 

proposed method showed better performance than the other tested methods (the highest average F-

measure). The F-measure is higher than 0.7 for all images showing that detection is very accurate. 

Furthermore, detection is successful for different sizes of copied areas – the smallest successful 

detected area is around 0.13% of the image size (360 pixels, Fig. 3a), and the largest is around 

14% of the image size. The Zernike method produces many false positives in homogeneous 
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regions, while the PCA method failed to detect some small copied regions. The SURF method is 

unable to discriminate repetitive image content from real duplicated regions and falsely detects 

homogeneous duplicated regions.  
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Fig. 5. Value of F-measure for 40 plain CMF images from CoMoFoD dataset with average F-

measure: Fproposed = 0.9428, FDCT = 0.9272, FPCA = 0.7715, FZernike = 0.9036, FSURF = 0.7181 

5.b Rotation of Duplicated Regions 

 Figure 6 shows detection result for cases when a copied region is rotated by 90° (Fig. 6a), 7° 

(Fig. 6b) and 180° (Fig. 6c), and one case of multiple CMF where the region is rotated by 2° and 

3° (Fig. 6d). In all cases the copied regions are correctly detected demonstrating that the proposed 

circular neighborhood can deal with different angles of rotation. Note that there are no falsely 

detected areas in any of the presented cases. Also, detection is quite successful for complex 

textures (Fig. 6a, F =0.7384), as well as for homogeneous regions (Fig. 6d, F = 0.8097). 

    

(a) α = 90°, 

F = 0.7384 

(b) α = 180°,  

F = 0.6956 

(c) α = 7°,  

F = 0.5688 

(d) α1 = 2°, α2 = 3°,  

F = 0.8097 

Fig. 6. Examples of detection results for rotation of the copied region for different angle α 

Results for 80 images and all tested methods are shown in Fig. 7. Testing is done on images with 

rotation angles α = {1°, 2°, 5°, 7°, 10°, 40°, 90°, 180°}. The DCT method successfully detects 

rotation by small angles (α < 5°). The Zernike method showed good performance for almost all 

angles, while the PCA method was completely unable to handle higher rotation angles (α > 3°). 

The SURF method exhibits the most stable F-measure but it is significantly lower than the Zernike 

and the proposed method. The proposed method showed high F-measures for α < 10° as well as 
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for α = 90° and α = 180°. For other tested cases detection was less accurate but it was still possible 

to partly detect copied regions for most rotation angles. 
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Fig. 7. Average F-measure for 80 images and different rotation angles (note that testing is done 

only for the highlighted angle values) 

5.c Scaling 

Figure 8 shows detection results for cases when a copied region is scaled by the scaling factor f. 

Note that factor f  has the same value in all directions, e.g. scaling is uniform. Scaling with factor f 

= 109 % (the copied region is 9 % larger than the original region) is illustrated in Fig. 8a. 

Detection is only partly possible (F ≈ 0.5), but no falsely detected regions are introduced, leading 

to easy identification of duplicated objects. An example of scaling a large region with scaling 

factor f = 91 % (the copied region is 9 % smaller than the original region) is presented in Fig. 8b. 

Detection is also only partly possible, but it clearly indicates duplicated regions. Figure 8d 

contains an example of multiple CMF when the duplicated region is scaled with factor f1 = 76 % 

and with factor f2 = 111 %. The F-measure is satisfactory high (F = 0.6131) indicating that 

detection is quite successful even in a case of higher scaling factors. Also, both copied regions are 

successfully detected with no falsely detected areas. 

    

(a) f = 109 %,  

F = 0.5309 

(b) f = 91 %,  

F = 0.5549 

(c) f = 95 %,  

F = 0.5681 

(d) f1 = 76 %, f2 = 111 

%, F = 0.6131 

Fig. 8. Examples of detection results for scaling of the copied region for different factor f 

Average F-measures for 40 images and different scaling factors are given in Fig. 9. Testing is done 

for scaling factors f = {91 % - 109 %} with a step of 2 and for f = {50 %, 80 %, 120 %, 200 %}. 

The proposed method demonstrated good capabilities to handle a moderate amount of scaling with 
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high F-measure for 91 % < f < 109 %. For the higher amounts of scaling, detection accuracy 

rapidly decreases. Other block-based methods, namely Zernike, PCA and DCT, showed similar 

behavior but for most scaling factors they gained a lower average F-measure. Opposite to that, the 

SURF method remained stable across the whole scaling range leading to the conclusion that 

keypoint-based methods perform better for scaling factors higher than 9 %. 
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Fig. 9. Average F-measure for 80 images and different scaling factors (note that testing is done 

only for the highlighted values of scaling factor) 

5.d Blurring 

CMFD on blurred images is done for two cases: an averaging filter of size 3 × 3 and 5 × 5, as 

shown in Fig. 10. In the first case (Fig. 10a and 10c), detection is almost perfect even after 

blurring. However, in the second case, filtering with an averaging filter of size 3 × 3 results in 

successful detection of forged regions but also introduces an additional falsely detected area (Fig. 

10b). Note that the falsely detected area is very similar to the duplicated areas (letter ”o”). 

Applying a 5 × 5 filter to the same image reduces the size of detected regions and introduces some 

other falsely detected blocks (Fig. 10d). Those blocks can be removed by increasing the distance 

threshold Td. 

    

(a) 3 × 3, F = 0.9686 (b) 3 × 3, F = 0.8820 (c) 5 × 5, F = 0.9629 (d) 5 × 5, F = 0.5603 

Fig. 10. Examples of detection results on blurred images with different averaging filter 

Detection results for all the methods are shown in Fig. 11 which illustrates the average F-measure 

for 80 original and forged images and both testing cases. The proposed method gained the highest 

F-measure for both cases, meaning that it can correctly detect most blurred images. Other tested 

methods were also successful in detection of blurred images but they introduced more falsely 
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detected areas than the proposed method. Also, the Zernike method over-detected homogeneous 

regions, while the SURF method showed over sensitivity on low contrast regions after image 

blurring. 
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Fig. 11. Average F-measure for 80 images and different size of averaging filter 

5.e Addition of noise 

Addition of noise randomly changes properties of duplicated image regions so in that case it is not 

sufficient to search for two blocks with the same properties. Therefore, filtering the image with an 

averaging filter of size 3 × 3 is applied prior to the detection. Figure 12 contains an example of 

detection on a noisy image which contains added Gaussian noise with zero mean and different 

values of variance. Note that image intensities were normalized to the range [0, 1] prior to the 

addition of noise. Detection is partly possible even when a large amount of noise is added (Fig. 

12a). However, note that even a large amount of noise does not introduce any falsely detected 

areas, which is a very important feature for digital image forensics. 

Figure 13 contains results for 80 images when Gaussian noise of zero mean and different values of 

variance is added (0.0001 - 0.1, with multiplier step equal to 10). For a smaller amount of noise, 

the Zernike method was slightly more successful in detection of duplicated areas, but for larger 

amounts of noise the proposed method achieved the best performance in comparison to the other 

tested methods. 

    

(a) σ2 = 0.1,  

F = 0.1189 

(b) σ2 = 0.01,  

F = 0.1195 

(c) σ2 = 0.001,  

F = 0.4014 

(d) σ2 = 0.0001,  

F = 0.9570 

Fig. 12. Example of detection results on a noisy image for different values of variance σ2 
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Fig. 13. Average F-measure for 80 images and different values of variance 

5.f JPEG compression 

Detection of duplicated images after JPEG compression presents a serious problem for most 

detection algorithms because of its specific compression process where every 8×8 block of the 

image is treated separately. The consequence is that the same blocks have completely different 

binary representations, and so different sets of rules are generated. Also, JPEG blocks are smaller 

than the overlapping blocks defined in the proposed method (b = 13). However, as in the case of 

added noise, dealing with JPEG compression is possible by pre-processing the image using an 

averaging filter. Figure 14 presents detection results for a forgery example with different JPEG 

quality factors. Accuracy of detection of duplicated areas rapidly decreases for higher levels of 

JPEG compression. However, even for images with high JPEG compression, detection is partly 

possible, and there are no falsely detected areas (Fig. 14a). 

Results for all tested methods are presented in Fig. 15, where the average F-measure for 80 test 

images is given. The proposed method was equally successful in detection of JPEG images as the 

DCT method for higher quality factors, while for lower JPEG quality the DCT method showed 

slightly better performance. The SURF method was most stable but it also gained a lower F-

measure for most JPEG compression factors in comparison with the proposed method. 

Additionally, the proposed method outperformed other tested methods for all amounts of JPEG 

compression. 

    

(a) q = 30, 

F = 0.2381 

(b) q = 50,  

F = 0.4009 

(c) q = 70, 

F = 0.6010 

(d) q = 80, 

F = 0.8104 

Fig. 14. Examples of detection results on a JPEG image with different values of quality factor q 
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Fig. 15. Average F-measure for 80 images and different values of JPEG compression factor 

5.g Feature Vector Complexity  

An important part of every CMF detection algorithm is the description of features using 

reduced and robust feature vectors. Table 3 shows the size of the calculated feature vectors for all 

tested methods. The size of feature vectors for the DCT and PCA methods (as well as 

computational complexity) depends on block size and image content, respectively. The size of the 

Zernike feature vector is defined by Zernike moment order o, and it is equal to 12 for o = 5 [12], 

however it is computationally demanding. The size of SURF feature vectors (64 values) does not 

depend on any method specific parameters. Although SURF produces large feature vectors, it 

contains a smaller number of feature vectors than any block-based method. In the proposed 

method, the size of feature vector depends on the size of the CA neighborhood (2n). However, each 

feature vector contains only binary values so it can be represented as a single decimal number. In 

comparison with other methods, this property allows a significantly simplified description of 

texture. Computational complexity depends on the number of sampling points and the size of 

neighborhood but it is not more demanding than other block-based methods. 

Table 3. Properties of generated feature vectors for all tested methods 
 

 

 

 

 

6.Conclusion 

 Detection of Detection of duplicated image regions has been widely researched in the past few 

years due to the fact that digital image content can be easily manipulated. Therefore we presented 

a new block-based method for detection of duplicated image regions that combines LBP with CA 

Group Method 
Size of feature 

vector 

Dependence of 

parameter 

Block-based 

  

Proposed 128 (b) = 1 (d) Neighborhood size n* 
DCT [6] 256 (d) Blocks size b 
PCA [14] / Image content 

Zernike [12] 12 (d) Zernike moment order o  
Keypoint-based SURF [17, 18] 64 (d) / 

* influence only on size of the feature vector in binary form 
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to accomplish a powerful pattern description. Identification of duplicated regions is accomplished 

by analyzing local changes of pixel luminance values in a circular neighborhood. Pixel values are 

transformed to binary values using LBP to form a reduced representation of a block and the binary 

values are used as an input to CA. The produced feature vector indicates the use of a specific set of 

patterns in the block texture, so similar image areas should produce similar feature vectors. 

FLANN is applied to the feature vectors set to find the k nearest neighbors for every element and a 

new search method is applied to select the duplicated blocks.  

Testing results showed excellent performance in the case of plain CMF detection and multiple 

CMF, where the proposed method outperformed the DCT, PCA, Zernike and SURF methods. 

While the DCT method gained similar F-measures as the proposed method, the PCA method was 

unable to detect some small duplicated regions. Furthermore, the Zernike method generated a lot 

of falsely detected areas on homogeneous regions (e.g. sky) and the SURF method falsely marked 

a large amount of repetitive image content due to background similarities. 

Detection of rotated regions was quite successful for most rotation angles in which the proposed 

method gained similar accuracy as the Zernike method. The SURF method showed most stable 

detection but with lower average F-measure, and the PCA and DCT methods successfully detected 

only at small rotation angles. In detection of scaling, the proposed method showed similar 

behavior to other block-based methods, but with a slightly higher average F-measure. The reason 

for that lies in better robustness to homogeneous regions and repetitive image content. The 

keypoint-based method showed the lowest change in detection accuracy for different scaling 

factors, but it also achieve the lowest average F-measure for almost all scaling factors. 

Furthermore, the proposed method showed good robustness to blurring, addition of noise and 

JPEG compression. It gained the best average F-measure for blurred images and images with 

added Gaussian noise, and it showed similar accuracy as the DCT method for JPEG compression.  

An important advantage of the proposed method is its binary coded feature vectors that can be 

represented as a single number, in contrast to all previous proposed methods. A simple descriptor 

of local luminance changes is applicable to classification tasks thanks to its low computational 

complexity and possibility for fast and efficient analysis. 

The strength of the proposed method lies in the description of local changes of pixel luminance 

values defined using LBP so it is not significantly affected by image post-processing. 

Additionally, the circular neighborhood assures insensitivity to rotation of the duplicated region. 

Use of a new search method allows better analysis of similarities between calculated feature 

vectors. The proposed method has low computational complexity and low memory requirements, 

and it produces a significantly more reduced description of image texture than all previously 

proposed methods. 
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