Skip to main content
Log in

Robust object tracking based on sparse representation and incremental weighted PCA

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Object tracking plays a crucial role in many applications of computer vision, but it is still a challenging problem due to the variations of illumination, shape deformation and occlusion. A new robust tracking method based on incremental weighted PCA and sparse representation is proposed. An iterative process consisting of a soft segmentation step and a foreground distribution update step is adpoted to estimate the foreground distribution, cooperating with incremental weighted PCA, we can get the target appearance in terms of the PCA components with less impact of the background in the target templates. In order to make the target appearance model more discriminative, trivial and background templates are both added to the dictionary for sparse representation of the target appearance. Experiments show that the proposed method with some level of background awareness is robust against illumination change, occlusion and appearance variation, and outperforms several latest important tracking methods in terms of tracking performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Avidan S (2004) Support vector tracking. IEEE Trans Pattern Anal Mach Intell 26(8):1064–1072

    Article  Google Scholar 

  2. Babenko B, Yang M-H, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  3. Bao C, Wu Y, Ling H, Ji H (2012) Real time robust l1 tracker using accelerated proximal gradient approach. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1830–1837

  4. Cehovin L, Kristan M, Leonardis A (2011) An adaptive coupled-layer visual model for robust visual tracking. In: 2011 IEEE international conference on computer vision (ICCV). IEEE, pp 1363–1370

  5. Cehovin L, Kristan M, Leonardis A (2013) Robust visual tracking using an adaptive coupled-layer visual model. IEEE Trans Pattern Anal Mach Intell 35(4):941–953

    Article  Google Scholar 

  6. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2000, vol 2. IEEE, pp 142–149

  7. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–577

    Article  Google Scholar 

  8. Cota N, Kasetkasem T, Kovavisaruch L-O, Yamaoka K (2015) A robust moving object tracking. In: 2015 6th international conference of information and communication technology for embedded systems (IC-ICTES). IEEE, pp 1–6

  9. Dinh TB, Vo N, Medioni G (2011) Context tracker: exploring supporters and distracters in unconstrained environments. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1177–1184

  10. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  11. Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88(2):303–338

    Article  Google Scholar 

  12. Grabner H, Bischof H (2006) On-line boosting and vision. In: 2006 IEEE computer society conference on computer vision and pattern recognition, vol 1. IEEE, pp 260–267

  13. Grabner H, Grabner M, Bischof H (2006) Real-time tracking via on-line boosting. In: BMVC, vol 1, p 6

  14. Guo K, Xu X, Qiu F, Chen J (2013) A novel incremental weighted pca algorithm for visual tracking. In: 2013 20th IEEE international conference on image processing (ICIP). IEEE, pp 3914–3918

  15. Hale ET, Yin W, Zhang Y (2008) Fixed-point continuation for ∖ell_1-minimization: methodology and convergence. SIAM J Optim 19(3):1107–1130

    Article  MathSciNet  MATH  Google Scholar 

  16. Hare S, Saffari A, Torr PH (2011) Struck: structured output tracking with kernels. In: 2011 IEEE international conference on computer vision (ICCV). IEEE, pp 263–270

  17. Isard M, Blake A (1998) Condensation conditional density propagation for visual tracking. Int J Comput Vis 29(1):5–28

    Article  Google Scholar 

  18. Jepson AD, Fleet DJ, El-Maraghi TF (2003) Robust online appearance models for visual tracking. IEEE Trans Pattern Anal Mach Intell 25(10):1296–1311

    Article  Google Scholar 

  19. Jia X, Lu H, Yang M-H (2012) Visual tracking via adaptive structural local sparse appearance model. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1822–1829

  20. Kalal Z, Matas J, Mikolajczyk K (2010) Pn learning: bootstrapping binary classifiers by structural constraints. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 49–56

  21. Klein DA, Schulz D, Frintrop S, Cremers AB (2010) Adaptive real-time video-tracking for arbitrary objects. In: 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 772–777

  22. Kwon J, Lee KM (2010) Visual tracking decomposition. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1269–1276

  23. Mei X, Ling H (2009) Robust visual tracking using l1 minimization. In: 2009 IEEE 12th international conference on computer vision. IEEE, pp 1436–1443

  24. Oron S, Bar-Hillel A, Levi D, Avidan S (2012) Locally orderless tracking. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1940–1947

  25. Ross DA, Lim J, Lin R-S, Yang M-H (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1–3):125–141

    Article  Google Scholar 

  26. Rother C, Kolmogorov V, Blake A (2004) Grabcut: interactive foreground extraction using iterated graph cuts. In: ACM transactions on graphics (TOG), vol 23. ACM, pp 309–314

  27. Wang D, Lu H, Yang M-H (2013) Online object tracking with sparse prototypes. IEEE Trans Image Process 22(1):314–325

    Article  MathSciNet  MATH  Google Scholar 

  28. Zha Y, Cao T, Huang H, Song Z, Liang W, Li F (2015) Robust object tracking via local constrained and online weighted. Multimedia Tools and Applications, pp 1–23

  29. Zhang B, Li Z, Perina A, Del Bue A, Murino V (2015) Adaptive local movement modelling for object tracking. In: 2015 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 25–32

  30. Zhang K, Zhang L, Yang M-H (2012) Real-time compressive tracking. In: Computer Vision–ECCV 2012. Springer, Berlin Heidelberg New York, pp 864–877

    Chapter  Google Scholar 

  31. Zhang K, Zhang L, Yang M-H, Zhang D Fast tracking via spatio-temporal context learning. arXiv:1311.1939

  32. Zhou H, Yuan Y, Shi C (2009) Object tracking using sift features and mean shift. Comput Vis Image Underst 113(3):345–352

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No.61171142, 61401163), and the Science and Technology Planning Project of Guangdong Province of China (No. 2011A010801005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangmin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, X., Qiu, F., Xu, X. et al. Robust object tracking based on sparse representation and incremental weighted PCA. Multimed Tools Appl 76, 2039–2057 (2017). https://doi.org/10.1007/s11042-015-3164-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-3164-6

Keywords

Navigation