Skip to main content
Log in

General construction for XOR-based visual cryptography and its extended capability

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A visual cryptography scheme (VCS) can be realized by Boolean operations OR and XOR, respectively. The monotone property of OR operation reduces the visual quality of recovered image. To overcome this problem, some advanced XOR based VCSs (VCSXOR) were further designed to provide some favorable features such as high contrast and good resolution. However, they are all confined to non-strong access structures. In this paper, we focus on strong access structures and propose a general construction of VCSXOR, which provides flexible sharing strategies, perfect reconstruction of secret image. Furthermore, a new region incrementing VCS based on XOR (RIVCSXOR) is presented, which exploits the proposed VCSXOR. Experimental results show that our schemes further enrich the application scenarios and outperform previous schemes significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ateniese G, Blundo C, De Santis A, Stinson DR (1996) Visual cryptography for general access structures. Inf Comput 129(2):86–106

    Article  MathSciNet  MATH  Google Scholar 

  2. Biham E, Itzkovitz A (1997) Visual cryptography with polarization. The Dagstuhl Seminar on Cryptography

  3. Bonis AD, Santis AD (2004) Randomness in secret sharing and visual cryptography schemes. Theor Comput Sci 314:351–374

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen T, Tsao K (2009) Visual secret sharing by random grids revisited. Pattern Recogn 42(9):2203–2217

    Article  MATH  Google Scholar 

  5. Droste S (1996) New results on visual cryptography. In Proc. 1996 Advances in Cryptography-CRYPTO’96. 401–415

  6. Fu ZX, Yu B (2014) Visual cryptography and random grids schemes. In Proceedings of 12th International Workshop on Digital-Forensics and Watermarking, CBD Auckland, New Zealand, Oct. 2013. LNCS. 8389:109–122

  7. Guo T, Liu F, Wu C (2013) Threshold visual secret sharing by random grids with improved contrast. J Syst Softw 86:2094–2109

    Article  Google Scholar 

  8. Kafri O, Keren E (1987) Encryption of pictures and shapes by random grids. Opt Lett 12(6):377–379

    Article  Google Scholar 

  9. Lee Y, Wang B, Chen T (2013) Quality-improved threshold visual secret sharing scheme by random grids. IET Image Process 7(2):137–143

    Article  MathSciNet  Google Scholar 

  10. Liu F, Wu C, Lin X (2010) Step construction of visual cryptography schemes. IEEE Trans Inf forensics Secur 5(1):27–38

    Article  Google Scholar 

  11. Liu F, Wu C, Lin X (2011) Cheating immune visual cryptography scheme. IET Inf Secur 5(1):51–59

    Article  Google Scholar 

  12. Naor M, Shamir A (1995) Visual cryptography. In Proc. EUROCRYPT’ 94. 1–12

  13. Prisco RD, Santis AD (2014) On the relation of random grid and deterministic visual cryptography. IEEE Trans Inf Forensics Secur 9(4):653–665

    Article  Google Scholar 

  14. Shyu SJ, Chen MC (2011) Optimum pixel expansions for threshold visual secret sharing schemes. IEEE Trans Inf Forensics Secur 6(3):960–969

    Article  Google Scholar 

  15. Shyu SJ, Jiang HW (2012) Efficient construction for region incrementing visual cryptography. IEEE Trans Circuits Syst Video Technol 22(5):769–777

    Article  Google Scholar 

  16. Shyu SJ, Jiang HW (2013) General constructions for threshold multiple-secret visual cryptography schemes. IEEE Trans Inf Forensics Secur 8(5):733–743

    Article  Google Scholar 

  17. Tuyls P, Hollmann HDL, van Lint JH, Tolhuizen L (2005) XOR-based visual cryptography schemes. Des Codes Crypt 37(1):169–186

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang RZ (2009) Region incrementing visual cryptography. IEEE Signal Process Lett 16(8):659–662

    Article  Google Scholar 

  19. Wu XT, Sun W (2013) Generalized random grid and its applications in visual cryptography. IEEE Trans Inf Forensics Secur 8(9):1541–1553

    Article  Google Scholar 

  20. Yang CN (2004) New visual secret sharing schemes using probabilistic method. Pattern Recogn Lett 25:481–494

    Article  Google Scholar 

  21. Yang CN, Shih HW, Chu YY, Harn L (2011) New region incrementing visual cryptography scheme. The 2011 International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV 2011) in conjunction with WORLDCOMP 2011, LasVegas, USA. 323–329

  22. Yang C, Shih H, Wu C, Harn L (2012) k out of n region incrementing scheme in visual cryptography. IEEE Trans Circuits Syst Video Technol 22(5):799–810

    Article  Google Scholar 

  23. Yang CN, Wang D (2013) Property analysis of XOR based visual cryptography. IEEE Trans Circuits Syst Video Technol 24(2):189–197

    Article  Google Scholar 

  24. Yang CN, Wu CC, Wang DS (2014) A discussion on the relationship between probabilistic visual cryptography and Random Grid. Inform Sci 278:141–143

    Article  MathSciNet  Google Scholar 

  25. Yu B, Shen G (2014) Multi-secret visual cryptography with deterministic contrast. Multimedia Tools Appl 72(6):1867–1886

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China under Grant NO.61070086 and Foundation of Science and Technology on Information Assurance Laboratory of China under Grant NO.KJ-13-107. The authors would like to thank the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Hu or Gang Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Shen, G., Fu, Z. et al. General construction for XOR-based visual cryptography and its extended capability. Multimed Tools Appl 75, 13883–13911 (2016). https://doi.org/10.1007/s11042-016-3250-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3250-4

Keywords

Navigation