Skip to main content
Log in

Robust object tracking via multi-scale patch based sparse coding histogram

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

There are many visual tracking algorithms that are based on sparse representation appearance model. Most of them are modeled by local patches with fixed patch scale, which make trackers less effective when objects undergone appearance changes such as illumination variation, pose change or partial occlusion. To solve the problem, a novel appearance representation model is proposed via multi-scale patch based sparse coding histogram for robust visual tracking. In this paper, the appearance of an object is modeled by different scale patches, which are represented by sparse coding histogram with different scale dictionaries. Then a similarity measure is applied to the calculation of the distance between the sparse coding histograms of target candidate and target template. Finally, the similarity score of the target candidate is passed to a particle filter to estimate the target state sequentially in the tracking process. Additionally, in order to decrease the visual drift caused by partial occlusion, an occlusion handling strategy is adopted, which takes the spatial information of multi-scale patches and occlusion into account. Based on the experimental results on some benchmarks of video sequences, our tracker outperforms state-of-the-art tracking methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adam A, Rivlin E, Shimshoni I et al. (2006) Robust fragments-based tracking using the integral histogram. Proc IEEE Conf Comput Vision Pattern Recognit 798-805

  2. Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans Signal Process 50(2):174–188

    Article  Google Scholar 

  3. Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271

    Article  Google Scholar 

  4. Babenko B, Ming-Hsuan Y, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  5. Bai T, Li YF (2012) Robust visual tracking with structured sparse representation appearance model. Pattern Recognit 45(6):2390–2404

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao C, Wu Y, Ling H et al. (2012) Real time robust L1 tracker using accelerated proximal gradient approach. Proc IEEE Conf Comput Vision Pattern Recognit 1830-1837

  7. Cabido R, Montemayor JAS, Pantrigo J, Martínez-Zarzuela M, Payne BR (2012) High-performance template tracking. J Vis Commun Image Represent 23(2):271–286

    Article  Google Scholar 

  8. Chen F, Wang Q, Wang S, Zhang W, Xu W (2011) Object tracking via appearance modeling and sparse representation. Image Vis Comput 29(11):787–796

    Article  Google Scholar 

  9. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–577

    Article  Google Scholar 

  10. Doucet A, Freitas N, Gordon N et al. (2001) Sequential monte carlo methods in practice

  11. Everingham M, Gool LV, Williams C, Winn J, Zisserman A (2010) The pascal visual object classes (VOC) challenge. Int J Comput Vis 88(2):303–338

    Article  Google Scholar 

  12. Fukunaga K (1990) Introduction to statistical pattern recognition, second ed., Academic Press

  13. Grabbner H, Bischof H (2006) On-line boosting and vision. Proc IEEE Conf Comput Vision Pattern Recognit 260–267

  14. Guoheng H, Chi-Man P, Cong L, Yicong Z (2015) Non-rigid visual object tracking using user-defined marker and Gaussian kernel. Multimed Tools Applic. doi:10.1007/s11042-015-2516-6

    Google Scholar 

  15. He SF, Yang QX, Lau R et al. (2013)Visual tracking via locality sensitive histograms. Proc IEEE Conf Comput Vision Pattern Recognit 2427-2434

  16. Jia X, Lu H, Yang MH et al. (2012) Visual tracking via adaptive structural local sparse appearance model. Proc IEEE Conf Comput Vision Pattern Recognit 1822-1829

  17. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422

    Article  Google Scholar 

  18. Kwon J, Lee KM (2011) Tracking by sampling trackers. Proc IEEE Int Conf Comput Vision 1195-1202

  19. Li X, Hu W, Shen C, Zhang Z, Dick A, Hengel A (2013) A survey of appearance models in visual object tracking. ACM Trans Intell Syst Technol (TIST) 4(4):1–58

    Article  Google Scholar 

  20. Liu B, Huang J (2011) Robust tracking using local sparse appearance model and K-selection. Proc IEEE Conf Comput Vision Pattern Recognit 1313-1320

  21. Matthews I, Ishikawa T, Baker S (2004) The template update problem. IEEE Trans Pattern Anal Mach Intell 26(6):810–815

    Article  Google Scholar 

  22. Mei X, Ling H (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell (PAMI) 33(11):2259–2272

    Article  Google Scholar 

  23. Nejhum SMS, Ho J, Yang M-H et al. (2008) Visual tracking with histograms and articulating blocks. Proc IEEE Conf Comput Vision Pattern Recognit 1-8

  24. Parag T, Porikli F, Elgammal A et al. (2008) Boosting adaptive linear weak classifiers for online learning and tracking. Proc IEEE Conf Comput Vision Pattern Recognit 1-8

  25. Perez P, Hue C, Vermaak J et al. (2002) Color-based probabilistic tracking. Proc Europ Conf Comput Vision 661-675

  26. Ren X, Ramanan D (2013) Histograms of sparse codes for object detection. Proc IEEE Conf Comput Vision Pattern Recognit 3246- 3253

  27. Ross D, Lim J, Lin R-S, Yang M-H (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1):125–141

    Article  Google Scholar 

  28. Tropp JAA, Gilbert C (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang Q, Chen F, Xu W, Yang M-H (2012) Object tracking via partial least squares analysis. IEEE Trans Image Process 21(10):4454–4465

    Article  MathSciNet  Google Scholar 

  30. Wang S, Lu H, Yang F et al. (2011) Superpixel tracking. Proc IEEE Conf Comput Vision 1323-1330

  31. Wang J, Yang J, Yu K et al. (2010) Locality constrained linear coding for image classification. Proc IEEE Conf Comput Vision Pattern Recognit 3360-3367

  32. Wright J, Ma Y, Mairal J, Sapiro G, Huang T, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044

    Article  Google Scholar 

  33. Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2008) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell (PAMI) 31(2):210–227

    Article  Google Scholar 

  34. Wu Y, Lim J, Yang M-H et al. (2013) Online object tracking: a benchmark. Proc IEEE Conf Comput Vision Pattern Recognit 2411-2418

  35. Xie CJ, Tan JQ, Chen P, Zhang J, He L (2013) A multiple instance learning tracking method with local sparse representation. IET Comput Vis 7(5):320–334

    Article  Google Scholar 

  36. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):13

    Article  Google Scholar 

  37. Zhang KH, Zhang L, Yang MH et al. (2012) Real-time compressive tracking. Proc Europ Conf Comput Vision 864–877

  38. Zhong W, Lu H, Yang M.-H et al. (2012) Robust object tracking via sparsity-based collaborative model. Proc IEEE Conf Comput Vision Pattern Recognit 1838-1845

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61070227, 61300058, 61472282, 31401293 and 41302261), the NSFC-Guangdong Joint Foundation Key Project under Grant (No. U1135003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Chen or Chengjun Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, H., Tan, J. et al. Robust object tracking via multi-scale patch based sparse coding histogram. Multimed Tools Appl 76, 12181–12203 (2017). https://doi.org/10.1007/s11042-016-3289-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3289-2

Keywords

Navigation