Skip to main content
Log in

A scrambling framework for block transform compressed image

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this work, we propose a scrambling framework for block transform compressed image. First, three attacks are proposed to sketch the outline of the original image directly from its scrambled counterpart by exploiting information deduced from the transformed components. Based on the proposed sketch attacks, a scrambling framework aiming to minimize the bitstream size overhead and prevent the leakage of visual information is put forward. In particular, the DC components are manipulated within each non-overlapping region to achieve the scrambling while simultaneously reducing the bitstream size overhead. The non-DC components are shuffled and substituted to generate a completely distorted image while preventing information leakage. The ideas are implemented in JPEG to verify its performance and compare to that of the conventional JPEG based scrambling methods. Results indicate that the proposed methods exhibit stable performance in terms of the bitstream size overhead when using different quality factors, and it is able to withstand the proposed sketch attacks as well as the classical cryptographic attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Arbelaez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5):898–916

    Article  Google Scholar 

  2. Ayoub F, Singh K (1984) Cryptographic techniques and network security. IEE Proc F Commun Radar Signal Process 131(7):684–694

    Article  Google Scholar 

  3. Bharat B, Changgui S, Sheng-Yih W (2004) MPEG video encryption algorithms. Multimed Tools Appl 24(1):57–79. doi:10.1023/B:MTAP.0000033983.62130.00

    Article  Google Scholar 

  4. Cheng H, Li X (2000) Partial encryption of compressed images and videos. IEEE Trans Signal Process 48(8):2439–2451

    Article  Google Scholar 

  5. Haralick RM, Shapiro Linda G (1992) Computer and robot vision, 1st edn. Addison Wesley Longman Publishing Co Inc, Boston

    Google Scholar 

  6. ISO/IEC (1993). ISO/IEC 11172-3:1993 Information technology – coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s – part 2: video

  7. ISO/IEC (1994). ISO/IEC 10918-1:1994 Information technology – digital compression and coding of continuous-tone still images: requirements and guidelines

  8. ISO/IEC (2000). ISO/IEC 13818-2:2000 Information technology – generic coding of moving pictures and associated audio information: video

  9. ISO/IEC (2003). ISO/IEC 14496-10:2003 Information technology – coding of audio-visual objects – part 10: advanced video coding

  10. Johnson M, Ishwar P, Prabhakaran V, Schonberg D, Ramchandran K (2004) On compressing encrypted data. IEEE Trans Signal Process:2992–3006. doi:10.1109/TSP.2004.833860

  11. Kundur D, Karthik K (2004) Video fingerprinting and encryption principles for digital rights management. Proc IEEE 92(6):918–932

    Article  Google Scholar 

  12. Li S, Chen G, Cheung A, Bhargava B, Lo K.T (2007) On the design of perceptual MPEG-video encryption algorithms. IEE Trans Circuits Syst Video Technol 17(2):214–223

    Article  Google Scholar 

  13. Li W, Yuan Y (2007) A leak and its remedy in JPEG image encryption. Int J Comput Math 84:1367–1378

    Article  MathSciNet  MATH  Google Scholar 

  14. Lian S, Liu Z, Ren Z, Wang H (2007) Commutative encryption and watermarking in video compression. IEEE Trans Circuits Syst Video Technol 17:774–778

    Article  Google Scholar 

  15. Lian S, Sun J, Wang Z (2004) A novel image encryption scheme based on JPEG encoding. In: Proceedings, eighth international conference on information visualisation, IV 2004, pp 217–220

  16. Massoudi A, Lefebvre F, De Vleeschouwer C, Macq B, Quisquater JJ (2008) Overview on selective encryption of image and video: challenges and perspectives. EURASIP J Inf Secur 2008:5:1– 5:18

    Google Scholar 

  17. Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Modeling Comput Simul 8:3–30

    Article  MATH  Google Scholar 

  18. Niu X, Zhou C, Ding J, Yang B (2008) JPEG encryption with file size preservation. In: IIHMSP’08 int conf, pp 308–311

  19. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  20. Parvin Z, Seyedarabi H, Shamsi M (2014) A new secure and sensitive image encryption scheme based on new substitution with chaotic function. Multimed Tools Appl:1–18. doi:10.1007/s11042-014-2115-y

  21. Pazarci M, Dipcin V (2002) A MPEG2-transparent scrambling technique. IEEE Trans Consum Electron 48(2):345–355

    Article  Google Scholar 

  22. Pennebaker WB, Mitchell JL (1992) JPEG still image data compression standard, 1st edn. Kluwer Academic Publishers, Norwell

    Google Scholar 

  23. Rao K.R, Yip P (1990) Discrete cosine transform: algorithms, advantages, applications. Academic Press Professional, Inc., San Diego

    Book  MATH  Google Scholar 

  24. Semantics-sensitive Integrated Matching for Picture LIbraries: SIMPLIcity image dataset. http://wang.ist.psu.edu/jwang/test1.zip

  25. Subramanyam AV, Emmanuel S (2014) Partially compressed-encrypted domain robust jpeg image watermarking. Multimed Tools Appl 71(3):1311–1331. doi:10.1007/s11042-012-1272-0

    Article  Google Scholar 

  26. Sullivan G, Ohm J, Han W.J, Wiegand T, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 22(12):1649– 1668

    Article  Google Scholar 

  27. Takayama M, Tanaka K, Takagi K, Nakajima Y (2008) A scalable video scrambling method in MPEG compressed domain. In: 2008 3rd int symp commun control and signal process, pp 1035– 1040

  28. Takayama M, Tanaka K, Yoneyama A, Nakajima Y (2006) A video scrambling scheme applicable to local region without data expansion. In: Int conf multimedia and expo, pp 1349–1352

  29. Tang Z, Zhang X, Lan W (2014) Efficient image encryption with block shuffling and chaotic map. Multimedia tools and applications, pp. 1–20. doi:10.1007/s11042-014-1861-1

  30. The Independent JPEG Group’s (2012) The Independent JPEG Group’s JPEG software. http://www.ijg.org/files/jpegsr8d.zip

  31. University of Southern California - signal and image processing institute: USC-SIPI image database. http://sipi.usc.edu/database/misc.zip

  32. Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  33. Wong K, Tanaka K (2010) DCT based scalable scrambling method with reversible data hiding functionality. In: 2010 4th int. symp commun. control and signal process, pp 1–4

  34. Zeng W, Lei S (2003) Efficient frequency domain selective scrambling of digital video. IEEE Trans Multimed 5(1):118–129

    Article  MathSciNet  Google Scholar 

  35. Zhang M, Tong X (2014) A new chaotic map based image encryption schemes for several image formatsmap based image encryption schemes for several image formats. J Syst Softw 98(0):140–154. doi:10.1016/j.jss.2014.08.066

    Article  Google Scholar 

  36. Zhou J, Liu X, Au O, Tang YY (2014) Designing an efficient image encryption-then- compression system via prediction error clustering and random permutation. IEEE Trans Inf Forensics Secur 9(1):39–50

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the University Malaya Research Grant (account number RG050-11ICT) under the purview of ICT & Computational Science Research Cluster, UM Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KokSheik Wong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minemura, K., Wong, K., Qi, X. et al. A scrambling framework for block transform compressed image. Multimed Tools Appl 76, 6709–6729 (2017). https://doi.org/10.1007/s11042-016-3338-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3338-x

Keywords

Navigation