Skip to main content
Log in

Blind image separation based on reorganization of block DCT

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Blind image separation consists in processing a set of observed mixed images to separate them into a set of original components. Most of the current blind separation methods assume that the sources are as statistically independent or sparsity as possible given the observations. However, these hypotheses do not hold in real world situation. Considering that the images do not satisfy the independent and sparsity conditions, so the mixed images cannot be separated with independent component analysis and sparse component analysis directly. In this paper, a method based on reorganization of blocked discrete cosine transform (RBDCT) is first proposed to separate the mixed images. Firstly, we get the sparse blocks through RBDCT, and then select the sparsest block adaptively by linear strength in which the mixing matrix can be estimated by clustering methods. In addition, a theoretical result about the linearity of the RBDCT is proved. The effectiveness of the proposed approach is demonstrated by several numerical experiments and compared the results with other classical blind image methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ali S, Raziyeh O (2015) Security in the speech cryptosystem based on blind sources separation. Multimed Tools Appl 74(21):9715–9728

    Article  Google Scholar 

  2. Bofill P, Zibulevsky M (2001) Underdetermined blind source separation using sparse representations. Signal Process 81(11):2353–2362

    Article  MATH  Google Scholar 

  3. Caiafa CF, Cichocki A (2009) Estimation of sparse nonnegative sources from noisy overcomplete mixtures using MAP. Neural Comput 21(12):3487–3518

    Article  MathSciNet  MATH  Google Scholar 

  4. Cichocki A, Amari S, Siwek K. ICALAB Toolboxes. http://www.bsp.brain.riken.jp/ICALAB

  5. Comon P, Jutten C (2010) Handbook of blind source separation: independent component analysis and applications. Academic, New York, USA, pp 779–814

    Google Scholar 

  6. Costagli M, Kuruoglu EE (2007) Image separation using particle filters. Digit Signal Process 17:935–946

    Article  Google Scholar 

  7. Dong WS, Zhang L, Lukac R (2013) Sparse representation based image interpolation with nonlocal autoregressive modeling. IEEE Trans Image Process 22(4):1382–1394

    Article  MathSciNet  Google Scholar 

  8. Fadili JM, Starck JL, Bobin J (2010) Image decomposition and separation using sparse representations: an overview. Proc IEEE 98(6):983–994

    Article  Google Scholar 

  9. Georgiev PG, Theis F, Cichocki A (2005) Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans Neural Netw 16(4):992–996

    Article  Google Scholar 

  10. Guan N, Tao D, Luo Z (2012) Online nonnegative matrix factorization with robust stochastic approximation. IEEE Trans Neural Netw 23(7):1087–1099

    Article  Google Scholar 

  11. Hamed M, Seyed S (2015) A new fast and efficient active steganalysis based on combined geometrical blind source separation. Multimed Tools Appl 74(15):5825–5843

    Article  Google Scholar 

  12. Hao JC, Lee I, Lee TW (2010) Independent vector analysis for source separation using a mixture of Gaussians prior. Neural Comput 22(6):1646–1673

    Article  MathSciNet  MATH  Google Scholar 

  13. He ZS, Xie SL, Fu YL (2006) Sparse representation and blind source separation of ill-posed mixtures. Science in China Ser E Information Sciences 36(8):864–879

    MathSciNet  Google Scholar 

  14. Hu C, Xu Z et al (2014) Semantic link network based model for organizing multimedia big data. IEEE Trans Emerg Top Comput 2(3):376–387

    Article  MathSciNet  Google Scholar 

  15. Karray E, Loghmari MA, Naceur MS (2010) Blind source separation of hyperspectral images in DCT-domain. 2010 5th Advanced Satellite Multimedia Systems Conference and the 11th Signal Processing for Space Communications Workshop. Piscataway: IEEE, 381–388

  16. Karri S, Sur A (2015) Steganographic algorithm based on randomization of DCT kernel. Multimedia Tools Appl 74(21):9207–9230

    Article  Google Scholar 

  17. Kim S, Yoo CD (2009) Underdetermined blind source separation based on subspace representation. IEEE Trans Signal Process 57(7):2604–2614

    Article  MathSciNet  Google Scholar 

  18. Li XL, Adali T (2010) Independent component analysis by entropy bound minimization. IEEE Trans Signal Process 58(10):5151–5164

    Article  MathSciNet  Google Scholar 

  19. Li RH, Yang ZY, Zhao M (2009) SVM based underdetermined blind source separation. J Electron Inf Technol 31(2):319–322

    Google Scholar 

  20. Luo X, Xu Z, Yu J, Chen X (2011) Building association link network for semantic link on web resources. IEEE Trans Autom Sci Eng 8(3):482–494

    Article  Google Scholar 

  21. Modaghegh H, Seyedin S (2015) A new fast and efficient active steganalysis based on combined geometrical blind source separation. Multimedia Tools Appl 74(15):5825–5843

    Article  Google Scholar 

  22. Ozgen MT, Kuruoglu EE, Herranz D (2009) Astrophysical image separation by blind time-frequency source separation methods. Digit Signal Process 19:360–369

    Article  Google Scholar 

  23. Rao KR, Yip P (1990) Discrete cosine transform. Academic, New York

    Book  MATH  Google Scholar 

  24. Reju VG, Koh SN, Soon IY (2009) An algorithm for mixing matrix estimation in instantaneous blind source separation. Signal Process 89:1762–1773

    Article  MATH  Google Scholar 

  25. Tonazzini A, Bedini L (2013) Restoration of recto-verso color documents using correlated component analysis. EURASIP J Adv Sig Process 2013(58):1–10

    Google Scholar 

  26. Via J, Palomar DP, Vielva L (2011) Quaternion ICA from second-order statistics. IEEE Trans Signal Process 59(4):1586–1600

    Article  Google Scholar 

  27. Wang Z, Bovik AC, Sheikh HR (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  28. Xie SL, Yang L, Yang JM (2012) Time-frequency approach to underdetermined blind source separation. IEEE Trans Neural Netw 23(2):306–316

    Article  Google Scholar 

  29. Xiong ZX, Guleryuz OG, Orchard MT (1996) A DCT-based embedded image coder. IEEE Signal Process Let 3(11):289–290

    Article  Google Scholar 

  30. Xu Z et al. Crowdsourcing based description of urban emergency events using social media big data. IEEE Transactions on Cloud Computing. doi:10.1109/TCC.2016.2517638

  31. Xu Z et al (2015) Semantic based representing and organizing surveillance big data using video structural description technology. J Syst Softw 102:217–225

    Article  Google Scholar 

  32. Yang ZY, Xiang Y, Rong Y (2013) Projection-pursuit based method for blind separation of nonnegative sources. IEEE Trans Neural Netw 24(1):47–57

    Article  Google Scholar 

  33. Yang ZY, Xiang Y, Xie SL (2012) Nonnegative blind source separation by sparse component analysis based on determinant measure. IEEE Trans Neural Netw 23(10):1601–1610

    Article  Google Scholar 

  34. Yu XC, Xu JD, Hu D (2013) A new blind image source separation algorithm based on feedback sparse component analysis. Signal Process 93(1):288–296

    Article  Google Scholar 

  35. Zarzoso V, Comon P (2010) Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size. IEEE Trans Neural Netw 21(2):248–261

    Article  Google Scholar 

  36. Zeng YN, Zhang YJ, Qi R (2014) Discrete consine transform-based algorithm for blind sources separation. ICIC Express Lett 8(7):1975–1980

    Google Scholar 

  37. Zhang YJ, Peng HM, Li HW (2012) Linear strength-based algorithm to sparse dependent sources separation. J Inf Comput Sci 9(9):2451–2464

    Google Scholar 

  38. Zhao DB, Gao W, Chan YK (2002) Morphological representation of DCT coefficients for image compression. IEEE Trans Circuits Syst Video 12(9):819–823

    Article  Google Scholar 

  39. Zibulevsky M, Elad M (2010) L1-L2 optimization in signal and image processing. IEEE Signal Process Mag 27(3):76–81

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (Grant No. 61203287), Natural Science Foundation of Hubei Province (No. 2014CFB414), the Special Fund for Basic Scientific Research of Central Colleges, China University of Geosciences Wuhan (Grant No. CUGL130247) and the Youth Foundation of Naval University of Engineering (Grant No. HGDQNJJ13005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yang, D., Qi, R. et al. Blind image separation based on reorganization of block DCT. Multimed Tools Appl 75, 12101–12121 (2016). https://doi.org/10.1007/s11042-016-3397-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3397-z

Keywords

Navigation