Skip to main content
Log in

Extended quantum cuts for unsupervised salient object extraction

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this manuscript, an unsupervised salient object extraction algorithm is proposed for RGB and RGB-Depth images. Saliency estimation is formulated as a foreground detection problem. To this end, Quantum-Cuts (QCUT), a recently proposed spectral foreground detection method is investigated and extended to formulate the saliency estimation problem more efficiently. The contributions of this work are as follows: (1) a new proof for QCUT from spectral graph theory point of view is provided, (2) a detailed analysis of QCUT and comparison to well-known graph clustering methods are conducted, (3) QCUT is utilized in a multiresolution framework, (4) a novel affinity matrix construction scheme is proposed for better encoding of saliency cues into the graph representation and (5) a multispectral analysis for a richer set of salient object proposals is investigated. With the above improvements, we propose Extended Quantum Cuts, which consistently achieves an exquisite performance over all benchmark saliency detection datasets, containing around 18 k images in total. Finally, the proposed approach also outperforms the state-of-the-art on a recently announced RGB-Depth saliency dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. IEEE Conf Comput Vis Pattern Recog

  2. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S (2012) Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2281

    Article  Google Scholar 

  3. Alpert S, Galun M, Basri R, Brandt A (2007) Image segmentation by probabilistic bottom-up aggregation and cue integration. In CVPR, pp 1–8

  4. Aytekin C, Kiranyaz S, Gabbouj M (2013) Quantum mechanics in computer vision: automatic object extraction. Int Conf Image Process:2489–2493

  5. Aytekin C, Kiranyaz S, Gabbouj M (2014) Automatic object segmentation by quantum cuts. 22nd International Conference on Pattern Recognition, Stockholm, 24–28, pp 112–117

  6. Borji A (2014) What is a salient object? A dataset and a baseline model for salient object detection. In IEEE TIP

  7. Borji A, Cheng MM, Jiang H, Li J et al (2015) Salient object detection: a benchmark. arXiv preprint arXiv:1501.02741

  8. Casares M, Velipasalar S, Pinto A (2010) Light-weight salient foreground detection for embedded smart cameras. Comput Vis Image Underst 114(11):1223–1237

    Article  Google Scholar 

  9. Cheng M.-M, Mitra NJ, Huang X, Hu S.-M; SalientShape: Group Saliency in Image Collections (2013) The visual computer

  10. Cheng M.-M, Warrell J, Lin W.-Y, Zheng S, Vineet V, Crook N (2013) Efficient salient region detection with soft image abstraction. Int Conf Comput Vis

  11. Cheng MM, Zhang G, Mitra N, Huang X, Hu S (2011) Global contrast based salient region detection. IEEE Conf Comput Vis Pattern Recog

  12. Gao D, Mahadevan V, Vasconcelos N (2007) The discriminant center-surround hypothesis for bottom-up saliency. Conf Neural Inf Process Syst

  13. Goferman S, Manor L, Tal A (2010) Context-aware saliency detection. IEEE Conf Comput Vis Pattern Recog

  14. Hadizadeh H, Bajic IV (2014) Saliency-aware video compression. IEEE Trans Image Process 23(1):19–33

    Article  MathSciNet  Google Scholar 

  15. Han J, Sun L, Hu X, Han J, Shao L (2014) Spatial and temporal visual attention prediction in videos using eye movement data. Neurocomputing 145:140–153

    Article  Google Scholar 

  16. Harel J, Koch C, Perona P (2006) Graph-based visual saliency. Conf Neural Inf Process Syst

  17. Hou X, Zhang L (2007) Thumbnail Generation based on Global Saliency. Adv Neurodyn: 999–1003

  18. Hou X, Zhang L (2007) Saliency detection: A spectral residual approach. IEEE Conf Comput Vis Pattern Recog

  19. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  20. Jiang Z, Davis LS (2013) Submodular salient region detection. IEEE Conf Comput Vis Pattern Recog

  21. Jiang H, Wang J, Yuan Z, Liu T, Zheng N, Li S (2011) Automatic salient object segmentation based on context and shape prior. In British Machine Vision Conference (BMVC)

  22. Jiang H, Wang J, Yuan Z, Wu Y, Zheng N, Li S (2013) Salient object detection: a discriminative regional feature integration approach. IEEE Conf Comput Vis Pattern Recog

  23. Jiang B, Zhang L, Lu H, Yang C, Yang M-H (2013) Saliency detection via absorbing Markov chain. 14th International Conference on Computer Vision

  24. Judd T, Ehinger K, Durand F, Torralba A (2009) Learning to predict where humans look. Int Conf Comput Vis

  25. Kiranyaz S, Ferreira M, Gabbouj M (2006) Automatic object extraction over multiscale edge field for multimedia retrieval. IEEE Trans Image Process:15(12)

  26. Klein D, Frintrop S (2011) Center-surround divergence of feature statistics for salient object detection. Int Conf Comput Vis

  27. Liboff RL (2003) Introductory quantum mechanics, 4th edn. Addison Wesley, San Francisco

    MATH  Google Scholar 

  28. Liu T, Sun J, Zheng N, Tang X, Shum H (2007) Learning to detect a salient object. IEEE Conf Comput Vis Pattern Recog

  29. Luxburg UV (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

    Article  MathSciNet  Google Scholar 

  30. Margolin R, Manor LZ, Tal A (2012) Saliency for image manipulation. Vis Comput 29(5):381–392

    Article  Google Scholar 

  31. Peng H, Li B, Xiong W, Hu W, Ji R RGBD salient object detection: a benchmark and algorithms. In Proceedings of the 13th European Conference on Computer Vision (ECCV2014)

  32. Perazzi F, Krahenbuhl P, Pritch Y, Hornung A (2012) Saliency filters: contrast based filtering for salient region detection. IEEE Conf Comput Vis Pattern Recog

  33. Rigas I, Economou G, Fotopoulos S (2015) Efficient modelling of visual saliency based on local sparse representation and the use of hamming distance. Comput Vis Image Underst 134:33–45

    Article  Google Scholar 

  34. Rother C, Kolmogorov V, Blake A (2004) GrabCut: interactive foreground extraction using iterated graph cuts. In SIGGRAPH

  35. Rudoy D, Goldman DB, Shechtman E, Manor LZ (2013) Learning video saliency from human gaze using candidate selection. IEEE Conference on Computer Vision and Pattern Recognition, pp 1147–1154

  36. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  37. THUR15000, http://mmcheng.net/gsal/

  38. Tong Y, Cheikh FA, Guraya FFE, Konik H, Tremeau A (2011) A spatiotemporal saliency model for video surveillance. Cogn Comput 3(1):241–263

    Article  Google Scholar 

  39. Valenti R, Sebe N, Gevers T (2009) Image saliency by isocentric curvedness and color. Int Conf Comput Vis

  40. Wang L, Xue J, Zheng N, Hua G (2011) Automatic salient object extraction with contextual cue. Int Conf Comput Vis

  41. Wei YC, Cheng CK (1991) Ratio cut partitioning for hierarchical designs 10(7):911–921

  42. Wei Y, Wen F, Zhu W, Sun J (2012) Geodesic saliency using background priors. Eur Conf Comput Vis

  43. Yan Q, Xu L, Shi J, Jia J (2013) Hierarchical saliency detection. Comput Vis Pattern Recog

  44. Yang C, Zhang L, Lu H, Ruan X, Yang M.-H (2013) Saliency detection via graph-based manifold ranking. Comput Vis Pattern Recog

  45. Zhu W, Liang S, Wei Y, J Sun (2014) Saliency optimization from robust background detection. IEEE Conf Comput Vis Pattern Recog

  46. Zou WB, Kpalma K, Liu Z, Ronsin J (2013) Segmentation driven low-rank matrix recovery for saliency detection, BMVC

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Çağlar Aytekin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aytekin, Ç., Ozan, E.C., Kiranyaz, S. et al. Extended quantum cuts for unsupervised salient object extraction. Multimed Tools Appl 76, 10443–10463 (2017). https://doi.org/10.1007/s11042-016-3431-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3431-1

Keywords

Navigation