Skip to main content
Log in

Robust mean shift tracking based on refined appearance model and online update

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a robust mean shift tracking algorithm based on refined appearance model (RAM) and online update strategy is proposed. The main idea of the proposed algorithm is to construct a more accurate appearance model to improve tracking precision and design an online update strategy to adjust to the appearance variation. At the beginning of the tracking, the simple mean shift tracking algorithm is applied on the first few frames to collect a set of target templates, which contains both foreground and background of the target. During the model construction, simple linear iterative clustering (SLIC) algorithm is exploited to obtain the superpixels of the target templates, and the superpixels are further clustered to distinguish the foreground from background. A weighted vector is then obtained based on the classified foreground from background, which is utilized to modify the kernel histogram appearance model. The following frames are processed based on the mean shift tracking algorithm with the modified appearance model, and the stable tracking results with no occlusion will be selected to update the appearance model. The concrete operation of model update is the same as model construction. Experiment results on some challenging test sequences indicate that the proposed algorithm can well cope with both appearance variation and background change to obtain a robust tracking performance. A further comprehensive experiment on OTB2013 demonstrates that the proposed tracking algorithm outperforms the state-of-the-art works in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Achanta R, Shaji A, Smith K, Pascal F, Sabine S (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2281

    Article  Google Scholar 

  2. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE Press, New York, pp 798–805

  3. Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  4. Birchfield S, Rangarajan S (2005) Spatiograms versus histograms for region-based tracking. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition. IEEE Press, San Diego, pp 1158–1163

  5. Bradski G (1998) Real time face and object tracking as a component of a perceptual user interface. In: Proceedings of the fourth IEEE workshop on applications of computer vision. IEEE Press, Princeton, pp 214–219

  6. Cheng Y (1995) Mean shift, mode seeking and clustering. IEEE Trans Pattern Anal Mach Intell 17(8):790–799

    Article  Google Scholar 

  7. Collins R (2003) Mean-shift blob tracking through scale space, IEEE Press, Wisconsin

  8. Collins R, Liu Y, Leordeanu M (2005) Online selection of discriminative tracking features. IEEE Trans Pattern Anal Mach Intell 27(10):1631–1643

    Article  Google Scholar 

  9. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  10. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(2):564–577

    Article  Google Scholar 

  11. Fukunaga F, Hostetler L (1975) The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans Inf Theory 21(1):32–40

    Article  MathSciNet  MATH  Google Scholar 

  12. Grabner H, Grabner M, Bischof H (2006) Real-time tracking via on-line boosting. In: Proceedings of the British machine vision conference. Edinburgh, pp 47–56

  13. Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: Proceedings of the European conference on computer vision. Springer-Verlag, Marseille, pp 234–247

  14. Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of IEEE conference on computer vision and pattern recognition. IEEE Press, Providence, pp 1822–1829

  15. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422

    Article  Google Scholar 

  16. Leichter I (2012) Mean shift trackers with cross-bin metrics. IEEE Trans Patt Anal Mach Intell 34(4):695–706

    Article  Google Scholar 

  17. Matthews I, Ishikawa T, Baker S (2004) The template update problem. IEEE Trans Pattern Anal Mach Intell 26(6):810–815

    Article  Google Scholar 

  18. Ning J, Zhang L, Zhang D, Wu C (2012) Robust mean-shift tracking with corrected background-weighted histogram. IET Comput Vis 6(1):62–69

    Article  MathSciNet  Google Scholar 

  19. Ning J, Zhang L, Zhang D, Wu C (2012) Scale and orientation adaptive mean shift tracking. IET Comput Vis 6(1):52–61

    Article  MathSciNet  Google Scholar 

  20. Perez P, Hue C, Vermaak J, Gangnet M (2002) Color-based probabilistic tracking. In: Proceedings of the European conference on computer vision. Springer-Verlag, Berlin, pp 661–675

  21. Ross D, Lim J, Lin R, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1):125–141

    Article  Google Scholar 

  22. Smeulders A, Chu D, Cucchiara R, Calderara S, Dehghan A, Shah M (2014) Visual tracking: an experimental survey. IEEE Trans Pattern Anal Mach Intell 36(7):1442–1468

    Article  Google Scholar 

  23. Wang S, Lu H, Yang F, Yang M (2011) Superpixel tracking. In: Proceedings of the international conference on computer vision. IEEE Press, Barcelona, pp 1323–1330

  24. Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition. IEEE Press, Portland, pp 2411–2418

  25. Wu Y, Lim J, Yang MH (2015) Object tracking benchmark. Trans Pattern Anal Mach Intell 37(9):1834–1848

    Article  Google Scholar 

  26. Zhang K, Zhang L, Yang M-H (2012) Real-time compressive tracking. In: Proceedings of the European conference on computer vision. Springer-Verlag, Berlin, pp 864–877

  27. Zhuang B, Lu H, Xiao Z, Wang D (2014) Visual tracking via discriminative sparse similarity map. IEEE Trans Image Process 23(4):1872–1881

    Article  MathSciNet  Google Scholar 

  28. Zivkovic Z, Kröse B (2004) An EM-like algorithm for color-histogram based object tracking. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition. IEEE Press, Washington, pp 798–803

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (No.61473309 and 61403414) and Natural Science Basic Research Plan in Shaanxi Province of China (No.2016JM6050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangsheng Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Hou, Z., Hu, D. et al. Robust mean shift tracking based on refined appearance model and online update. Multimed Tools Appl 76, 10973–10990 (2017). https://doi.org/10.1007/s11042-016-3472-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3472-5

Keywords

Navigation