Skip to main content
Log in

HoloTabletop: an anamorphic illusion interactive holographic-like tabletop system

Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

HoloTabletop is a low-cost holographic-like tabletop interactive system. This system analyzes user’s head position and gaze location in a real time setting and computes the corresponding anamorphic illusion image. The anamorphic illusion image is displayed on a 2D horizontally-located monitor, yet offers stereo vision to the user. The user is able to view and interact with the 3D virtual objects without wearing any special glasses or devices. The experimental results and user studies verify that the proposed HoloTabletop system offers excellent stereo vision while no visual fatigue will be caused to human eyes. This system is a great solution for many interactive applications such as 3D board games and stereo map browsing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Bai H, Gao L, El-Sana J, Billinghurst M (2013) Markerless 3d gesture-based interaction for handheld augmented reality interfaces. In: symp. of ISMAR, pp. 1–6. IEEE 10.1109/ISMAR.2013.6671841

  2. Benko H, Jota R, Wilson A (2012) Miragetable: Freehand interaction on a projected augmented reality tabletop. In: proc. of CHI ’12, pp. 199–208. ACM 10.1145/2207676.2207704

  3. Bogdan N, Grossman T, Fitzmaurice G (2014) Hybridspace: Integrating 3d freehand input and stereo viewing into traditional desktop applications. In: symp. of 3DUI, pp. 51–58. IEEE 10.1109/3DUI.2014.6798842

  4. Borst C, Prachyabrued M (2013) Nonuniform and adaptive coupling stiffness for virtual grasping. In: Virtual Reality (VR), pp. 35–38. IEEE 10.1109/VR.2013.6549355

  5. Bruder G, Steinicke F, Sturzlinger W (2013) To touch or not to touch?: Comparing 2d touch and 3d mid-air interaction on stereoscopic tabletop surfaces. In: proc. of SUI ’13, pp. 9–16. ACM 10.1145/2491367.2491369

  6. Butler A, Hilliges O, Izadi S, Hodges S, Molyneaux D, Kim D, Kong D (2011) Vermeer: Direct interaction with a 360 degree viewable 3d display. In: proc. of UIST ’11, pp. 569–576. ACM 10.1145/2047196.2047271

  7. (2015) Displair: 3d multi-touch fog screen http://displair.com

  8. Fei Y, Kryze D, Melle A (2012) Tavola: Holographic user experience. In: proc. of SIGGRAPH ’12 Emerging Technologies, pp. 21:1–21:1. ACM 10.1145/2343456.2343477

  9. Ferreira F, Cabral M, Belloc O, Miller G, Kurashima C, de Deus Lopes R, Stavness I, Anacleto J, Zuffo M, Fels S (2014) Spheree: A 3d perspective-corrected interactive spherical scalable display. In: proc. of SIGGRAPH ’14 Poster, pp. 86:1–86:1. ACM 10.1145/2614217.2630585

  10. Hachet M, Bossavit B, Cohé A, de la Rivière JB (2011) Toucheo: Multitouch and stereo combined in a seamless workspace. In: proc. of UIST ’11, pp. 587–592. ACM 10.1145/2047196.2047273

  11. Han S, Park J (2014) Holo-haptics: Haptic interaction with a see-through 3d display. In: conf. of ICCE, pp. 512–513 10.1109/ICCE.2014.6776110

  12. Hilliges O, Izadi S, Wilson AD, Hodges S, Garcia-Mendoza A, Butz A (2009) Interactions in the air: Adding further depth to interactive tabletops. In: proc. of UIST ’09, pp. 139–148. ACM 10.1145/1622176.1622203

  13. Hilliges O, Kim D, Izadi S, Weiss M, Wilson A (2012) Holodesk: Direct 3d interactions with a situated see-through display. In: proc. of CHI ’12, pp. 2421–2430. ACM

  14. Hoshi T, Takahashi M, Nakatsuma K, Shinoda H (2009) Touchable holography. In: proc. of SIGGRAPH ’09 Emerging Technologies, pp. 23:1–23:1. ACM 10.1145/1597956.1597979

  15. Hunt J, Nickel B, Gigault C (2000) Anamorphic images. Am J Phys 68(3):232–237

    Article  Google Scholar 

  16. Kim D, Izadi S, Dostal J, Rhemann C, Keskin C, Zach C, Shotton J, Large T, Bathiche S, Nießner M, Butler DA, Fanello S, Pradeep V (2014) Retrodepth: 3d silhouette sensing for high-precision input on and above physical surfaces. In: proc. of CHI ’14, pp. 1377–1386. ACM 10.1145/2556288.2557336

  17. Kim K, Bolton J, Girouard A, Cooperstock J, Vertegaal R (2012) Telehuman: Effects of 3d perspective on gaze and pose estimation with a life-size cylindrical telepresence pod. In: proc. of CHI ’12, pp. 2531–2540. ACM 10.1145/2207676.2208640

  18. (2015) LeapMotion: Leap motion controller https://www.leapmotion.com

  19. Lee J, Olwal A, Ishii H, Boulanger C (2013) Spacetop: Integrating 2d and spatial 3d interactions in a see-through desktop environment. In: proc. of CHI ’13, pp. 189–192. ACM 10.1145/2470654.2470680

  20. Lee JE, Miyashita S, Azuma K, Lee JH, Park GT (2009) Anamorphosis projection by ubiquitous display in intelligent space. In: Universal access in human-computer interaction. Intelligent and ubiquitous interaction environments, pp. 209–217. Springer

  21. Leithinger D, Follmer S, Olwal A, Luescher S, Hogge A, Lee J, Ishii H (2013) Sublimate: State-changing virtual and physical rendering to augment interaction with shape displays. In: proc. of CHI ’13, pp. 1441–1450. ACM 10.1145/2470654.2466191

  22. Levoy M, Gerth J, Curless B, Pull K (2005) The stanford 3d scanning repository http://graphics.stanford.edu/data/3Dscanrep/

  23. Lucey S, Wang Y, Saragih J, Cohn JF (2010) Non-rigid face tracking with enforced convexity and local appearance consistency constraint. Image Vis Comput 28 (5):781–789

  24. Mendes D, Fonseca F, Araujo B, Ferreira A, Jorge J (2014) Mid-air interactions above stereoscopic interactive tables. In: symp. of 3DUI, pp. 3–10 10.1109/3DUI.2014.6798833

  25. Milborrow S, Morkel J, Nicolls F (2010) The MUCT landmarked face database pattern recognition association of South Africa http://www.milbo.org/muct

  26. Murphy-Chutorian E, Trivedi M (2009) Head pose estimation in computer vision: A survey. IEEE Trans Pattern Anal Mach Intell 31(4):607–626. doi:10.1109/TPAMI.2008.106

    Article  Google Scholar 

  27. (2015) OpenCV3: Camera calibration and 3d reconstruction. http://docs.opencv.org/trunk/modules/calib3d/doc/calib3d.html

  28. Van Krevelen D, Poelman R (2010) A survey of augmented reality technologies, applications and limitations. International Journal of Virtual Reality 9(2):1

    Google Scholar 

  29. Weichel C, Lau M, Kim D, Villar N, Gellersen HW (2014) Mixfab: A mixed-reality environment for personal fabrication. In: proc. of CHI ’14, pp. 3855–3864. ACM 10.1145/2556288.2557090

  30. Wilson AD, Benko H (2010) Combining multiple depth cameras and projectors for interactions on, above and between surfaces. In: proc. of UIST ’10, pp. 273–282. ACM 10.1145/1866029.1866073

  31. Yoo B, Han JJ, Choi C, Yi K, Suh S, Park D, Kim C 3d user interface combining gaze and hand gestures for large-scale display. In: proc. of CHI EA ’10, pp. 3709–3714. ACM 10.1145/1753846.1754043

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Lung Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, CH., Cheng, WH. & Hua, KL. HoloTabletop: an anamorphic illusion interactive holographic-like tabletop system. Multimed Tools Appl 76, 9245–9264 (2017). https://doi.org/10.1007/s11042-016-3531-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3531-y

Keywords

Navigation