Skip to main content
Log in

Highly non-rigid video object tracking using segment-based object candidates

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A novel scheme for non-rigid video object tracking using segment-based object candidates is proposed in this paper. Rather than using a conventional bounding box, the tracker is based on segments and considers the target object to be a combination of segments, where the hierarchical hue-saturation-value histogram is extracted as a feature. The objectness method is employed and integrated into the tracker to generate candidates for a similarity measure. Moreover, segment-based motion weights are introduced to give higher weights to candidates with motion consistency. A confidence-collecting scheme is proposed for similar candidates. To validate our method, experiments were conducted using several image sequences with different non-rigid challenges. The experimental results show that the proposed scheme can achieve better performance than other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Su (2010) “SLIC superpixels compared to state-of-the-art superpixel methods,”. Pattern Anal Mach Intell IEEE Trans 34:2274–2282

    Article  Google Scholar 

  2. Alexe B, Deselaers T, Ferrari V (2010) “What is an object?,”. Comput Vision Pattern Recognition (CVPR), 2010 I.E. Conf 73–80

  3. Babenko B, Ming-Hsuan Y, Belongie S (2011) “Robust object tracking with online multiple instance learning,”. Pattern Anal Mach Intell IEEE Trans 33:1619–1632

    Article  Google Scholar 

  4. Chockalingam P, Pradeep N, Birchfield S (2009) “Adaptive fragments-based tracking of non-rigid objects using level sets,”. Comput Vision, 2009 I.E. 12th Int Conf 1530–1537

  5. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603–619

    Article  Google Scholar 

  6. Forsyth D, Torr P, Zisserman A, Vedaldi A, Soatto S (2008) Quick shift and Kernel methods for mode seeking, computer vision. vol. 5305. Springer, Berlin Heidelberg, pp 705–718

    Google Scholar 

  7. Fuxin L, Taeyoung K, Humayun A, Tsai D, Rehg JM (2013) “Video segmentation by tracking many figure-ground segments,”. Comput Vision (ICCV), 2013 I.E. Int Conf 2192–2199

  8. Gall J, Razavi N, Gool L. v (2010) “On-line adaption of class-specific codebooks for instance tracking”. BMVC

  9. Godec M, Roth PM, Bischof H (2011) “Hough-based tracking of non-rigid objects,”. Comput Vision (ICCV), 2011 I.E. Int Conf 81–88

  10. Grabner H, Bischof H (2006) “On-line boosting and vision,”. Comput Vision Pattern Recognition, 2006 I.E. Comput Soc Conf 260–267

  11. Grabner H, Grabner M, Bischof H (2006) “Real-time tracking via on-line boosting,”. Proc British Mach Conf 6.1–6.10

  12. Isard M, Blake A (1998) Condensation-onditional density propagation for visual tracking. Int J Comput Vis 29:5–28

    Article  Google Scholar 

  13. Jang S-I, Choi K, Toh K-A, Teoh ABJ, Kim J (2015) Object tracking based on an online learning network with total error rate minimization. Pattern Recogn 48:126–139

    Article  Google Scholar 

  14. Junseok K, Kyoung Mu L (2013) “Highly nonrigid object tracking via patch-based dynamic appearance modeling,”. Pattern Anal Mach Intell IEEE Trans 35:2427–2441

    Article  Google Scholar 

  15. Kalal Z, Matas J, Mikolajczyk K (2010) “P-N learning: bootstrapping binary classifiers by structural constraints,”. Comput Vision Pattern Recognition (CVPR), 2010 I.E. Conf 49–56

  16. Kwon J, Lee KM (2009) “Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive Basin Hopping Monte Carlo sampling,”. Comput Vision Pattern Recognition, 2009. CVPR 2009. IEEE Conf 1208–1215

  17. Levinshtein A, Stere A, Kutulakos KN, Fleet DJ, Dickinson SJ, Siddiqi K (2009) “TurboPixels: fast superpixels using geometric flows,”. Pattern Anal Mach Intell IEEE Trans 31:2290–2297

    Article  Google Scholar 

  18. Liu T, Sun J, Zheng N-N, Tang X, Shum H-Y (2007) “Learning to detect a salient object,”. Comput Vision Pattern Recognition, 2007. CVPR ’07. IEEE Conf 1–8

  19. Manen S, Guillaumin M, Van Gool L (2013) “Prime object proposals with randomized prim’s algorithm,”. Comput Vision (ICCV), 2013 I.E. Int Conf 2536–2543

  20. Marfil R, Molina-Tanco L, Rodríguez JA, Sandoval F (2007) Real-time object tracking using bounded irregular pyramids. Pattern Recogn Lett 28:985–1001

    Article  Google Scholar 

  21. Mei X, Ling H (2011) “Robust visual tracking and vehicle classification via sparse representation,”. Pattern Anal Mach Intell IEEE Trans 33:2259–2272

    Article  Google Scholar 

  22. Ming-Ming C, Ziming Z, Wen-Yan L, Torr P (2014) “BING: binarized normed gradients for objectness estimation at 300fps,”. Comput Vision Pattern Recognition (CVPR), 2014 I.E. Conf 3286–3293

  23. Mori G (2005) Computer vision, 2005. ICCV 2005. Tenth IEEE Int Conf 2:1417–1423

    Google Scholar 

  24. Quinlan JR (1993) “C4.5: Programs for machine learning”. Morgan Kaufmann

  25. Ross D, Lim J, Lin R-S, Yang M-H (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77:125–141

    Article  Google Scholar 

  26. Rother C, Kolmogorov V, Blake A (2004) “GrabCut”: interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23:309–314

    Article  Google Scholar 

  27. Schapire RE (1999) “A brief introduction to boosting,”. Proc 16th Int Joint Conf Artificial Intellig - volume 2, Stockholm, Sweden

  28. Tissainayagam P, Suter D (2005) Object tracking in image sequences using point features. Pattern Recogn 38:105–113

    Article  Google Scholar 

  29. Van de Sande KEA, Uijlings JRR, Gevers T, Smeulders AWM (2011) “Segmentation as selective search for object recognition,”. Comput Vision (ICCV), 2011 I.E. Int Conf 1879–1886

  30. VLFeat Matlab toolbox. Available: http://www.vlfeat.org/overview/quickshift.html

  31. Wang S, Lu H, Yang F, Yang M-H (2011) “Superpixel tracking,”. Computer Vision (ICCV), 2011 I.E. Int Conf 1323–1330

  32. Wu Y, Lim J, Yang M-H (2013) “Online object tracking: a benchmark,”. Comput Vision Pattern Recognition (CVPR), 2013 I.E. Conf 2411–2418

  33. Xiaodi H, Liqing Z (2007) “Saliency detection: a spectral residual approach,”. Comput Vision Pattern Recognition, 2007. CVPR ’07. IEEE Conf 1–8

  34. Xue M, Haibin L (2009) “Robust visual tracking using L1 minimization,”. Comput Vision, 2009 I.E. 12th Int Conf 1436–1443

  35. Zhang K, Zhang L, Yang M-H (2012) “Real-time compressive tracking,”. Europ Conf Comput Vision (ECCV 2012), Florence, Italy

  36. Zhou H, Yuan Y, Shi C (2009) Object tracking using SIFT features and mean shift. Comput Vis Image Underst 113:345–352

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Research Committee of the University of Macau (MYRG2015-00011-FST, MYRG2015-00012-FST) and the Science and Technology Development Fund of Macau SAR (008/2013/A1, 093-2014-A2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Man Pun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Pun, CM. & Huang, G. Highly non-rigid video object tracking using segment-based object candidates. Multimed Tools Appl 76, 9565–9586 (2017). https://doi.org/10.1007/s11042-016-3563-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3563-3

Keywords

Navigation