Skip to main content
Log in

Anterior cruciate ligament reconstruction model based on anatomical position locating

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In the reconstruction surgery of Anterior Cruciate Ligament (ACL), how to locate the anatomical position is a very hard point to clinician occupational therapists. In this paper, we propose an Anatomical Position Locating (APL) approach based on Expectation Maximization (EM) algorithm. Firstly, the proposed intersection set operation algorithm is proposed to compute the attachment region between the injured ACL and femur or tibia. Then, the anatomical position is located by the 3D points cloud with the Gaussian spatial distribution. The last, the attachment spatial distribution and the barycenter, which are also viewed as the candidates of the anatomical position by a proposed EM algorithm, is partition. Experimental results verify our assumption and demonstrate that the located anatomical position has great serviceability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alentom-Geli E, Mendiguchia J, Samuelsson K, et al (2014) Prevention of non-contact anterior cruciate ligament injuries in sports. Part II: systematic review of the effectiveness of prevention programmes in male athletes. Knee Surg Sports Traumatol Arthrosc 22(1):16–25

    Article  Google Scholar 

  2. Amandeep KM, Navneet K (2013) Survey paper on clustering techniques, International Journal of Science. Engineering and Technology Research 2(4):803–806

    Google Scholar 

  3. Bell DR, et al (2014) Jump-landing biomechanics and knee-laxity change across the menstrual cycle in women with anterior cruciate ligament reconstruction. J Athl Train 49(2):154–162

    Article  Google Scholar 

  4. Carola FV, et al (2010) Anatomic Single- and Double-Bundle anterior cruciate ligament reconstruction flowchart. J Arthrosc Relat Surg 26(2):258–268

    Article  Google Scholar 

  5. Danyal N, et al (2014) Physeal-sensitive MRI analysis shows that an all-inside anterior cruciate ligament reconstruction in skeletally immature athletes is safe to the physis. The Journal of Arthroscopy And Related Surgery 30(6):11–22

    Google Scholar 

  6. Hensler D, Working ZM, illing worth KD, et al (2013) Correlation between femoral tunnel length and tunnel position in ACL reconstruction. J Bone Joint Surg Am 20:95(22):2029–2034

  7. Herbert A, Jones GL, Ingham E, Fisher J (2015) A biomechanical characterisation of acellular porcine super flexor tendons for use in anterior cruciate ligament replacement:Investigation into the effects of fat reduction and bioburden reduction bioprocesses. J Biomech 48(1):22–29

    Article  Google Scholar 

  8. Indelman V, Nelson E, Michael N, Dellaert F (2014) Multi-robot pose graph localization and data association from unknown initial relative poses via expectation maximization. International Conference on Robotics and Automation:593–600

  9. Julie G, et al (2008) A randomized controlled trial to prevent noncontact anterior cruciate ligament injury in female collegiate soccer palyers. Am J Sports Med 36(8):1476–1483

    Article  Google Scholar 

  10. Kellis E, Karagiannidis E, Patsika G (2015) Patellar tendon and hamstring momentarms and cross-sectional area in patients with anterior cruciate ligament reconstruction and controls. Comput Methods Biomech Biomed Engin 18(10):1083–1089

    Article  Google Scholar 

  11. Labella CR, Hennrikus W (2014) Anterior curciate ligament injuries: diagnosis, treatment,and prevention. Pediatrics 133(5):1437–1450

    Article  Google Scholar 

  12. Leathers MP, et al (2015) Trends and Demographics in anterior cruciate ligament reconstruction in the United States. J Knee Surg 02(01):189–210

    Google Scholar 

  13. Magdi SM, Haris MK (2013) Expectation maximization approach to databased fault diagnostics. Inf Sci 235(20):80–96

    MathSciNet  MATH  Google Scholar 

  14. Malik OA, Arosha SMN, Zaheer D (2015) An intelligent recovery progress evaluation system for ACL reconstructed subjects using integrated 3-D kinematics and EMG featrues. Journal of Biomedical and Health Informatics 19(2):453–463

    Article  Google Scholar 

  15. Martina A, et al (2014) Histological evaluation of regenerated semitendinosus tendon a minimum of 6 years after harvest for anterior cruciate ligament reconstruction. Orthopaedic Journal of Sports Medicine 2(9):1–6

    Google Scholar 

  16. Middleton KK, et al (2014) Anatomic anterior cruciate ligament reconstruction: a global perspective, Knee Surgery, Sports Traumatology. Arthroscopy 22(7):1467–1482

    Google Scholar 

  17. Patil DD, Deore SG (2013) Medical image segmentation: a review. International Journal of Computer Science and Mobile Computing 2(1):22–27

    Google Scholar 

  18. Patterson MR, Delahunt E, Caulfield B (2014) Peak knee adduction moment during gait in anterior cruciate ligament reconstructed females. Clin Biomech 29(2):138–142

    Article  Google Scholar 

  19. Radovan M, et al (2011) Long-term results of anterior cruciate ligament reconstruction: a comparison with non-operative treatment with a follow-up of 17-20 years. Int Orthop 35(7):1093–1097

    Article  Google Scholar 

  20. Rao Y, Ding X, Gou J, Ma Y (2015) ”An efficient ACL segmentation method,”. The 4th International Conference on Frontier Computing (ICFC), Bangkok, Thailand

    Google Scholar 

  21. Richard F, et al (2015) Treatment of acute anterior cruciate ligament tear: five years outcome of randomised trial. Br Med J 49(10)

  22. Saha P, et al (2011) A new Osteophyte segmentation algorithm using the partial shape model and its applications to rabbit femur anterior cruciate ligament transection via micro-CT imaging. IEEE Trans Biomed Eng 58(8):2212–2227

    Article  Google Scholar 

  23. Sarah C, et al (2015) Performance on the modified star excursion balance test at the time of return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 50(40):1–25

    Google Scholar 

  24. Simon MG, Stephen WM, Patria AH, Lorna B (2009) Incidence of anterior cruciate ligament injury and other knee ligament injuries: A national populationbased study. J Sci Med Sport 12(6):622–627

    Article  Google Scholar 

  25. Sugimoto D, et al (2014) Dosage effects of neuromuscular training intervention to reduce anterior cruciate ligament injuries in female athletes: Meta- and Sub- group analyses. Sports Med 44(4):551–562

    Article  Google Scholar 

  26. Susan M (2011) Anterior cruciate ligament reconstruction of the Knee. AORN J 93(2):210–225

    Article  Google Scholar 

  27. Tomoyuki M, et al (2013) Anatomic and histologic analysis of the mid-substance and fan-like extension fibres of the anterior cruciate ligament during knee motion, with special reference to the femoral attachment. Knee Surg Sports Traumatol Arthrosc 22(2):336–344

    Google Scholar 

  28. Van Ginckel A, Verdonk P, Victor J, et al (2013) Cartilage status in relation to return to sports after anterior cruciate ligament reconstruction. Am J Sports Med 41(3):550–559

    Article  Google Scholar 

  29. Vila JP, Schniter P (2013) Expectation-maximization Gaussian-Mixture approximate message passing. IEEE Trans Signal Process 61(19):4658–4672

    Article  MathSciNet  Google Scholar 

  30. Webster KE, Feller JA, Leigh WB, et al (2014) ”Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction,”. Am J Sports Med 42(3):641–647

    Article  Google Scholar 

  31. Zhu W, Lu W, Han Y, et al (2013) Application of a computerized navigation technique to assist arthroscopic anterior cruciate ligament reconstruction. Int Orthop 37(2):233–238

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments. This work is partly supported by the National Natural Science Foundation of China(Grant No.61300092,61502404,61502208), the Fundamental Research Funds for the Central Universities of China(Grant No.ZYGX2013J068), the Industrialization Development Foundation of Chengdu Research Institute of UESTC (Grant No. RWS-CYHKF-02-20150003),Natural Science Foundation of Fujian Province of China (Grant No. 2015J05132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunbo Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, Y., Ding, X., Li, J. et al. Anterior cruciate ligament reconstruction model based on anatomical position locating. Multimed Tools Appl 76, 9943–9958 (2017). https://doi.org/10.1007/s11042-016-3589-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3589-6

Keywords

Navigation