Skip to main content
Log in

Reversible data hiding based on the local smoothness estimator and optional embedding strategy in four prediction modes

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Four new prediction modes are proposed in this paper, each of which is a three-step process for all to-be-embedded pixels (nearly three-fourths of all the pixels). By designing each mode reasonably, all to-be-embedded pixels can be predicted with high accuracy, and thus, the number of embeddable pixels can be increased largely. In each step, a local smoothness estimator is utilized to determine if one embeddable pixel is located in a smooth or complex region, which is defined as the variance of the total neighbors of this pixel. In fact, the correlation evaluated by using the total neighbors, instead of a part, can reflect the complexity of the region more accurately. In this paper, an optional embedding strategy is introduced so as to select a low-distortion reversible data hiding (RDH) method according to the desired embedding rate (ER). Specifically, when the required ER is low, difference expansion (DE) is used to process those pixels in smooth regions while leaving the rest unaltered. With ER largely increased, adaptive embedding is used to embed 2-bit into these pixels with low local variance by DE while 1-bit into the remaining ones. The experimental results also demonstrate the proposed method is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156

    Article  MathSciNet  Google Scholar 

  2. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-lsb data embedding. IEEE Trans Image Process 12(2):157–160

    Google Scholar 

  3. Coltuc D, Chassery JM (2007) Very fast watermarking by reversible contrast mapping. IEEE Signal Process Lett 14(4):255–258

    Article  Google Scholar 

  4. Coltuc D (2011) Improved embedding for prediction-based reversible watermarking. IEEE Trans Inf Forensic Secur 6(3):873–882

    Article  Google Scholar 

  5. Coltuc D (2012) Low distortion transform for reversible watermarking. IEEE Trans Image Process 21(1):412–417

    Article  MathSciNet  Google Scholar 

  6. Coatrieux G, Guillou CL, Cauvin JM, Roux C (2009) Reversible watermarking for knowledge digest embedding and reliability control in medical images. IEEE Trans Inf Technol Biomed 13(2):158– 165

    Article  Google Scholar 

  7. Coatrieux G, Pan W, Cuppens-Boulahia N, Cuppens F, Roux C (2013) Reversible watermarking based on invariant image classification and dynamic histogram shifting. IEEE Trans Inf Forensic Secur 8(1):111–120

    Article  Google Scholar 

  8. Fridrich J, Goljan M, Du R (2002) Lossless data embedding-new paradigm in digital watermarking. In: EURASIP Journal Application Signal Processing, vol 2002, pp 185–196

  9. Gao X, An L, Yuan Y, Tao D, Li X (2011) Lossless data embedding using eneralized statistical quantity histogram. IEEE Trans Circ Syst Video Technol 21 (8):1061–1070

    Article  Google Scholar 

  10. Hong W (2010) An efficient prediction-and-shifting embedding technique for high quality reversible data hiding. EURASIP Journal Advance Signal Process

  11. Hong W, Chen TS, Shiu CW (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Softw 82(11):1833–1842

    Article  Google Scholar 

  12. Hong W, Chen T, Wu M (2013) An improved human visual system based reversible data hiding method using adaptive histogram modification. Opt Commun 291:87–97

    Article  Google Scholar 

  13. Honsinger CW, Jones PP, Rabbani M, Stoffe JC (2001) Lossless recovery of an original image containing embedded data. US Patent: 6278791W

  14. Hu Y, Lee HK, Li J (2009) DE-Based reversible data hiding with improved overflow location map. IEEE Trans Circ Syst Video Technol 19(2):250–260

    Article  Google Scholar 

  15. Jung S, Ha L, Ko S (2011) A new histogram modification based reversible data hiding algorithm considering the human visual system. IEEE Signal Process Lett 18(2):95–98

    Article  Google Scholar 

  16. Kamstra L, Heijmans H. JAM (2005) Reversible data embedding into images using wavelet technique and sorting. IEEE Trans Image Process 14(12):2082–2090

    Article  MathSciNet  Google Scholar 

  17. Kim HJ, Sachnev V, Shi YQ, Nam J, Choo HG (2008) A novel difference expansion transform for reversible data embedding. IEEE Trans Inf Forensic Secur 4 (3):456–465

    Google Scholar 

  18. Li XL, Yang B, Zeng TY (2011) Efficient reversible watermarking based on adaptive prediction-errorexpansion and pixel selection. IEEE Trans Image Process 20 (12):3524–3533

    Article  MathSciNet  Google Scholar 

  19. Li XL, Li B, Yang B, Zeng TY (2013) General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process 22 (6):2181–2191

    Article  MathSciNet  Google Scholar 

  20. Li XL, Li J, Li B, Yang B (2013) High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process 93 (1):198–205

    Article  Google Scholar 

  21. Li XL, Zhang WM, Gui XL, Yang B (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inf Forensic Secur 8(7):1091– 1100

    Article  Google Scholar 

  22. Luo L, Chen Z, Chen M, Zeng X, Xiong Z (2010) Reversible image watermarking using interpolation technique. IEEE Trans Inf Forensic Secur 5(1):187–193

    Article  Google Scholar 

  23. Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16:354–362

    Article  Google Scholar 

  24. Ou B, Li XL, Zhao Y, Ni RR (2013) Reversible data hiding based on pde predictor. J Syst Softw 86(10):2700–2709

    Article  Google Scholar 

  25. Peng F, Li X, Yang B (2012) Adaptive reversible data hiding scheme based on integer transform. Signal Process 92(1):54–62

    Article  Google Scholar 

  26. Peng F, Li XL, Yang B (2014) Improved pvo-based reversible data hiding. Digit Signal Process 25:255–265

    Article  Google Scholar 

  27. Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circ Syst Video Technol 19(7):989–999

    Article  Google Scholar 

  28. Tai WL, Yeh CM, Chang CC (2009) Reversible data hiding based on histogram modification of pixel differences. IEEE Trans Circ Syst Video Technol 19(6):906–910

    Article  Google Scholar 

  29. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  30. Thodi DM, Rodrłguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730

    Article  MathSciNet  Google Scholar 

  31. Tsai PY, Hu YC, Yeh HL (2009) Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process 89(6):1129–1143

    Article  MATH  Google Scholar 

  32. Wang X, Li XL, Yang B, Guo ZM (2010) Efficient generalized integer transform for reversible watermarking. IEEE Signal Process Lett 17(6):567–570

    Article  Google Scholar 

  33. Wang X, Li XL, Yang B (2010) High capacity reversible image watermarking based on in transform. In: Proceedings of ICIP

  34. Weng SW, Pan JS (2013) Reversible watermarking based on multiple predictionmodes and adaptive watermark embedding. Multimed Tools Appl 72 (3):3063–3083

    Article  Google Scholar 

  35. Weng SW, Pan JS (2015) Adaptive reversible data hiding based on a local smoothness estimator. Multimed Tools Appl 74(23):10657–10678

    Article  Google Scholar 

  36. Weng SW, Zhao Y, Pan JS, Ni RR (2008) Reversible watermarking based on invariability and adjustment on pixel pairs. IEEE Signal Process Lett 45(20):1022–1023

    Google Scholar 

  37. Weng SW, Zhao Y, Ni RR, Pan JS (2009) Parity-invariability-based reversible watermarking. IET Electronics Lett 1(2):91–95

    Google Scholar 

  38. Wu H-T, Huang JW (2012) Reversible image watermarking on prediction errors by efficient histogram modification. Signal Process 92(12):3000–3009

    Article  Google Scholar 

  39. Xuan GR, Yang CY, Zhen YZ, Shi YQ (2004) Reversible data hiding using integer wavelet transform and companding technique. In: Proceedings of IWDW, vol 5, pp 23–26

Download references

Acknowledgment

This work was supported in part by National NSF of China (No. 61201393, No. 61272498, No. 61571139), New Star of Pearl River on Science and Technology of Guangzhou (No. 2014J2200085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaowei Weng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, S., Pan, JS. & Zhou, L. Reversible data hiding based on the local smoothness estimator and optional embedding strategy in four prediction modes. Multimed Tools Appl 76, 13173–13195 (2017). https://doi.org/10.1007/s11042-016-3693-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3693-7

Keywords

Navigation