Skip to main content
Log in

Local–class–shared–topic latent Dirichlet allocation based scene classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a hierarchical probabilistic model for scene classification. This model infers the local–class–shared and local–class-specific latent topics respectively. Our approach consists of first learning the latent topics from the BoW representation and subsequently, training SVM on the distribution of the latent topics. This approach is compared to that of using traditional graphical models to learn the latent topics and training SVM on the topic distribution. The experiments on a variety of datasets show that the topics learned by our model have higher discriminative power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning, vol 1. Springer, New York

  2. Blei DM, McAuliffe JD (2010)

  3. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022

    MATH  Google Scholar 

  4. Bosch A, Zisserman A, Muoz X (2008) Scene classification using a hybrid generative/discriminative approach. IEEE Trans Pattern Anal Mach Intell 30(4):712–727

    Article  Google Scholar 

  5. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  6. Cao L, Fei-Fei L (2007) Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes. In: IEEE international conference on computer vision (ICCV). doi:10.1109/ICCV.2007.4408965. Rio de Janeiro, Brazil, pp 1–8

  7. Chang CC, Lin CJ (2012) Libsvm – a library for support vector machines. In: http://www.csie.ntu.edu.tw/cjlin/libsvm/

  8. Csurka G, Dance C, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. In: Workshop on statistical learning in computer vision, ECCV, vol 1, p 22

  9. Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2013)

  10. Farhadi A, Endres I, Hoiem D, Forsyth D (2009) Describing objects by their attributes. In: IEEE conference on computer vision and pattern recognition (CVPR). doi:10.1109/CVPR.2009.5206772. IEEE, Miami, Florida, USA, pp 1778–1785

  11. Fei-Fei L, Perona P (2005) A bayesian hierarchical model for learning natural scene categories. In: IEEE conference on computer vision and pattern recognition (CVPR). doi:10.1109/CVPR.2005.16, vol 2, San Diego, CA, USA, pp 524–531

  12. Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181

    Article  Google Scholar 

  13. Hearst MA, Dumais S, Osman E, Platt J, Scholkopf B (1998) Support vector machines. Intelligent Systems and their Applications 13(4):18–28

    Article  Google Scholar 

  14. Hofmann T (1999) Probabilistic latent semantic indexing. In: Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval. ACM, pp 50–57

  15. Huang C, Luo W (2015) Scene classification using class-supervised local-space-constraint latent dirichlet allocation. Multimedia Tools and Applications:1–14

  16. Kobayashi T (2013) Bof meets hog: feature extraction based on histograms of oriented p.d.f gradients for image classification. In: CVPR. IEEE, Portland, Oregon, p 2013

  17. Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. In: NIPS

  18. Lacoste-Julien S, Sha F, Jordan MI (2008) Disclda: discriminative learning for dimensionality reduction and classification. In: Advances in neural information processing systems. Vancouver, British Columbia, Canada, pp 897–904

  19. Lampert CH, Nickisch H, Harmeling S (2014) Attribute-based classification for zero-shot visual object categorization. IEEE Trans Pattern Anal Mach Intell 36 (3):453–465

    Article  Google Scholar 

  20. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE conference on computer vision and pattern recognition (CVPR), vol 2, New York, NY, USA, pp 2169–2178

  21. Li LJ, Fei-Fei L (2007) What, where and who? Classifying events by scene and object recognition. In: IEEE international conference on computer vision (ICCV), Rio de Janeiro, Brazil, pp 1–8

  22. Li H, Ngan KN (2011) A co-saliency model of image pairs. IEEE Trans Image Process 20(12):3365–3375

    Article  MathSciNet  Google Scholar 

  23. Li LJ, Socher R, Fei-Fei L (2009) Towards total scene understanding: classification, annotation and segmentation in an automatic framework. In: IEEE conference on computer vision and pattern recognition (CVPR). doi:10.1109/CVPR.2009.5206718, Miami Beach, Florida, USA, pp 2036–2043

  24. Li LJ, Su H, Fei-Fei L, Xing EP (2010) Object bank: a high-level image representation for scene classification & semantic feature sparsification. In: Advances in neural information processing systems, pp 1378–1386

  25. Li H, Meng F, Ngan KN (2013) Co-salient object detection from multiple images. IEEE Trans Multimedia 15(8):1896–1909

    Article  Google Scholar 

  26. Li H, Meng F, Luo B, Zhu S (2014) Repairing bad co-segmentation using its quality evaluation and segment propagation. IEEE Trans Image Process 23 (8):3545–3559

    Article  MathSciNet  Google Scholar 

  27. Luo W, Li H, Liu G, Zeng L (2013) Semantic annotation of satellite images using author–genre–topic model. IEEE Trans Geosci Remote Sens. Accepted

  28. Meng F, Li H, Liu G, Ngan KN (2012) Object co-segmentation based on shortest path algorithm and saliency model. IEEE Trans Multimedia 14(5):1429–1441

    Article  Google Scholar 

  29. Niu Z, Hua G, Gao X, Tian Q (2011) Spatial-disclda for visual recognition. In: IEEE conference on computer vision and pattern recognition (CVPR). Colorado Springs, CO, USA, pp 1769–1776

  30. Niu Z, Hua G, Gao X, Tian Q (2012) Context aware topic model for scene recognition. In: IEEE conference on computer vision and pattern recognition (CVPR). Providence, RI, USA, pp 2743–2750

  31. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    Article  MATH  Google Scholar 

  32. Perronnin F, Dance C (2007) Fisher kernels on visual vocabularies for image categorization. In: IEEE conference on computer vision and pattern recognition (CVPR), Minneapolis, Minnesota, USA, pp 1–8

  33. Rasiwasia N, Vasconcelos N (2013) Latent dirichlet allocation models for image classification. IEEE Trans Pattern Anal Mach Intell 35(11):2665–2679. doi:10.1109/TPAMI.2013.69

    Article  Google Scholar 

  34. Simonyan K, Zisserman A (2014)

  35. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2014). Going deeper with convolutions. arXiv:1409.4842

  36. Vedaldi A, Fulkerson B (2008) VLFEat: an open and portable library of computer vision algorithms. http://www.vlfeat.org/

  37. Vedaldi A, Lenc K Matconvnet – convolutional neural networks for matlab

  38. Wang C, Blei D, Li FF (2009) Simultaneous image classification and annotation. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Miami, Florida, USA, pp 1903–1910

  39. Wang C, Blei D, Li FF (2009) Simultaneous image classification and annotation. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009. IEEE, pp 1903–1910

  40. Wang W, Yan Y, Winkler S, Sebe N (2016) Category specific dictionary learning for attribute specific feature selection

    Google Scholar 

  41. Winn JM, Bishop CM (2005) Variational message passing. J Mach Learn Res 6:661–694

    MathSciNet  MATH  Google Scholar 

  42. Zhang J, Marszalek M, Lazebnik S, Schmid C (2006) Local features and kernels for classification of texture and object categories: a comprehensive study. In: IEEE conference on computer vision and pattern recognition workshop (CVPRW). doi:10.1109/CVPRW.2006.121, New York, NY, USA, pp 13–13

  43. Zhou X, Yu K, Zhang T, Huang TS (2010) Image classification using super-vector coding of local image descriptors. In: ECCV 2010. Springer, Heraklion, Crete, Greece, pp 141–154

  44. Zhu J, Ahmed A, Xing EP (2009) Medlda: maximum margin supervised topic models for regression and classification. In: Proceedings of the 26th annual international conference on machine learning. ACM, Montreal, Quebec, Canada, pp 1257–1264

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (No. 61525102, 61271289), and by The program for Science and Technology Innovative Research Team for Young Scholars in Sichuan Province, China (No. 2014TD0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Luo, W. & Xie, Y. Local–class–shared–topic latent Dirichlet allocation based scene classification. Multimed Tools Appl 76, 15661–15679 (2017). https://doi.org/10.1007/s11042-016-3863-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3863-7

Keywords

Navigation