Skip to main content
Log in

Segmentation fusion based on neighboring information for MR brain images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study on how to boost image segmentation algorithms. First of all, a novel fusion scheme is proposed to combine different segmentations with mutual information to reduce misclassified pixels and obtain an accurate segmentation. As the class label of each pixel depends on the pixel’s gray level and neighbors’ labels, the fusion scheme takes both spatial and intensity information of pixels into account. Then, a detail thresholding segmentation case is designed using the proposed fusion scheme. In the case, the local Laplacian filter is used to get the smoothed version of original image. To accelerate segmentation, a discrete curve evolution based Otsu method is employed to segment the original image and its smoothed version to get two different segmentation maps. The fusion scheme is used to fuse the two maps to get the final segmentation result. Experiments on medical MR-T2 brain images are conducted to demonstrate the effectiveness of the proposed segmentation fusion method. The experimental results indicate that the proposed algorithm can improve segmentation accuracy and it is superior to other multilevel thresholding methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Arora S, Acharya J, Verma A et al (2008) Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recogn Lett 29(2):119–125

    Article  Google Scholar 

  2. Aubry M, Paris S, Hasinoff SW et al (2014) Fast local Laplacian filters: theory and applications. ACM Trans Graph 33(5):1935–1946

    Article  MATH  Google Scholar 

  3. Ayech M, Ziou D (2016) Terahertz image segmentation using k-means clustering based on weighted feature learning and random pixel sampling. Neurocomputing 175:243–264

    Article  Google Scholar 

  4. Bai X, Latecki L, Liu W (2007) Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans Pattern Anal Mach Intell 29(3):449–462

    Article  Google Scholar 

  5. Bai X, Wang W (2014) Saliency-SVM: an automatic approach for image segmentation. Neurocomputing 136:243–255

    Article  Google Scholar 

  6. Banerjee S, Mitra S, Shankar B (2016) Single seed delineation of brain tumor using multi-thresholding. Inf Sci 330:88–103

    Article  Google Scholar 

  7. Bhandari A, Kumar A, Singh G (2015) Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms. Expert Syst Appl 42(22):8707–8730

    Article  Google Scholar 

  8. Chae S H, Moon H M, Chung Y et al (2014) Automatic lung segmentation for large-scale medical image management. Multimed Tools Appl 1–17

  9. Chander A, Chatterjee A, Siarry P (2011) A new social and momentum component adaptive PSO algorithm for image segmentation. Expert Syst Appl 38(5):4998–5004

    Article  Google Scholar 

  10. Chang H, Chen Z, Huang Q et al (2015) Graph-based learning for segmentation of 3D ultrasound images. Neurocomputing 151:632–644

    Article  Google Scholar 

  11. Chen X, Udupa J, Bagci U, Zhuge Y, Yao J (2012) Medical image segmentation by combining graph cuts and oriented active appearance models. IEEE Trans Image Process 21(4):2035–2046

    Article  MathSciNet  MATH  Google Scholar 

  12. Dirami A, Hammouche K, Diaf M et al (2013) Fast multilevel thresholding for image segmentation through a multiphase level set method. Signal Process 93(1):139–153

    Article  Google Scholar 

  13. Gloger O, Tonnies K, Laqua R, Volzke H (2015) Fully automated renal tissue volumetry in MR volume data using prior-shape-based segmentation in subject-specific probability maps. IEEE Trans Biomed Eng 62(10):2338–2351

    Article  Google Scholar 

  14. Horng M (2011) Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation. Expert Systems with Applications 38(11):13785–13791

    Google Scholar 

  15. Julie D, Agnès D, José-Luis L et al (2007) A nonparametric approach for histogram segmentation. IEEE Trans Image Process 16(1):253–261

    Article  MathSciNet  Google Scholar 

  16. Kang Y, Yamaguchi K, Naito T, Ninomiya Y (2011) Multiband image segmentation and object recognition for understanding road scenes. IEEE Trans Intell Transp Syst 12(4):1423–1433

    Article  Google Scholar 

  17. Kapur J, Sahoo P, Wong A (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graphics Image Process 29(3):273–285

    Article  Google Scholar 

  18. Khan S, Sanches J, Ventura R (2010) Robust band profile extraction using constrained nonparametric machine-learning technique. IEEE Trans Biomed Eng 57(10):2587–2591

    Article  Google Scholar 

  19. Kittler J, Illingworth J (1986) Minimum error thresholding. Pattern Recogn 19(1):41–47

    Article  Google Scholar 

  20. Ledig C, Shi W, Bai W et al (2014) Patch-based evaluation of image segmentation. 2014 I.E. Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society 3065–3072

  21. Lee S, Chung S, Park R (1990) A comparative performance study of several global thresholding techniques for segmentation. Computer Vis Graphics Image Process 52(2):171–190

    Article  Google Scholar 

  22. Lei Z, Qiang J (2011) A Bayesian network model for automatic and interactive image segmentation. IEEE Trans Image Process 20(9):2582–2593

    Article  MATH  MathSciNet  Google Scholar 

  23. Li Y, Feng X (2016) A multiscale image segmentation method. Pattern Recogn 52:332–345

    Article  Google Scholar 

  24. Li C, Huang R, Ding Z, Gatenby J, Metaxas D, Gore J (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20(7):2007–2016

    Article  MATH  MathSciNet  Google Scholar 

  25. Ma J, Lu L (2013) Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. Comput Vis Image Underst 117(9):1072–1083

    Article  Google Scholar 

  26. Maitra M, Chatterjee A (2008) A hybrid cooperative–comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding. Expert Syst Appl 34(2):1341–1350

    Article  Google Scholar 

  27. Manikandan S, Ramar K, Iruthayarajan M et al (2014) Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm. Measurement 47:558–568

    Article  Google Scholar 

  28. Oliva D, Cuevas E, Pajares G et al (2014) A multilevel thresholding algorithm using Electromagnetism Optimization. Neurocomputing 139:357–381

    Article  Google Scholar 

  29. Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27

    Google Scholar 

  30. Paris S, Hasinoff SW, Kautz J (2011) Local Laplacian filters: edge-aware image processing with a Laplacian pyramid. ACM Trans Graph 30(4)

  31. Peng B, Zhang D (2011) Automatic image segmentation by dynamic region merging. IEEE Trans Image Process 20(12):3592–3605

    Article  MathSciNet  Google Scholar 

  32. Sathya P, Kayalvizhi R (2011) Optimal multilevel thresholding using bacterial foraging algorithm. Expert Syst Appl 38(12):15549–15564

    Article  Google Scholar 

  33. Sathya P, Kayalvizhi R (2011) Optimal segmentation of brain MRI based on adaptive bacterial foraging algorithm. Neurocomputing 74(14):2299–2313

    Article  Google Scholar 

  34. Sathya P, Kayalvizhi R (2011) Amended bacterial foraging algorithm for multilevel thresholding of magnetic resonance brain images. Measurement 44(10):1828–1848

    Article  Google Scholar 

  35. Smistad E, Falch T, Bozorgi M, Elster A, Lindseth F (2015) Medical image segmentation on GPUs-A comprehensive review. Med Image Anal 20(1):1–18

    Article  Google Scholar 

  36. Wang X, Wu Z, Chen L, Yang H (2016) Pixel classification based color image segmentation using quaternion exponent moments. Neural Netw 74:1–13

    Article  Google Scholar 

  37. Weinland D, Ronfard R, Boyer E (2011) A survey of vision-based methods for action representation, segmentation and recognition. Comput Vis Image Underst 115(2):224–241

    Article  Google Scholar 

  38. Yang H, Ahuja N (2014) Automatic segmentation of granular objects in images: combining local density clustering and gradient-barrier watershed. Pattern Recogn 47(6):2266–2279

    Article  Google Scholar 

  39. Yin P (1999) A fast scheme for optimal thresholding using genetic algorithms. Signal Process 72(2):85–95

    Article  MATH  MathSciNet  Google Scholar 

  40. Zhang L, Gao Y, Xia Y, Lu Y, Shen K, Ji R (2014) Representative discovery of structure cues for weakly-supervised image segmentation. IEEE Trans Multimed 16(2):470–479

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China for Youths (No.61305046), Jilin Province Science Foundation for Youths (No.20130522117JH), and the Natural Science Foundation of Jilin Province (No.20140101193JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haipeng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Shen, X., Chen, H. et al. Segmentation fusion based on neighboring information for MR brain images. Multimed Tools Appl 76, 23139–23161 (2017). https://doi.org/10.1007/s11042-016-4098-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4098-3

Keywords

Navigation