Skip to main content
Log in

Color texture segmentation based on active contour model with multichannel nonlocal and Tikhonov regularization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Color texture image segmentation is one of the fundamental task in image processing. For segmenting the color texture, we propose a new active contour model based on multichannel nonlocal and Tikhonov regularization. In the new model, nonlocal operator and Tikhonov regularization are simultaneously contributing to the evolutionary process of the active contour. The nonlocal operator which is based on the image slice similarity can direct the contour evolution on the boundary of the object and is not affected by the texture. The Tikhonov regularization can diffuse the texture areas and then accelerate the evolution process of the active contour. In order to ease the solution of the energy function, we also design the Split-Bregman algorithm of the proposed method. Expeimental color texture image segmentation results demonstrate the validity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aujol F, Aubert G, Blanc-Feraud L (2003) Wavelet-based level set evolution for classification of textured images. IEEE Trans Image Process 12(12):1634–1641

    Article  MATH  MathSciNet  Google Scholar 

  2. Bresson X, Esedoglu S, Vandergheynst P, Thiran JP, Osher S (2007) Fast global minimization of the active contour/snake model. J Math Imaging Vision 28(2):151–167

    Article  MathSciNet  Google Scholar 

  3. Caselles V, Catte F, Coll T, Dibos F (1993) A geometric model for active contours in image processing. Numer Math 66:1–31

    Article  MATH  MathSciNet  Google Scholar 

  4. Caselles V, Kimmel R, Sapiro G (1997) On geodesic active contours. Int J Comput Vis 22(1):61–79

    Article  MATH  Google Scholar 

  5. Chen S, Cao L, Wang Y, Liu J, Tang X (2010) Image segmentation by MAP-ML estimations. IEEE Trans Image Process 19(9):2254–2264

    Article  MATH  MathSciNet  Google Scholar 

  6. Cimpoi M, Maji S, Vedaldi A (2015) Deep filter banks for texture recognition and segmentation. CVPR, 3828–3836

  7. Deng Y, Manjunath BS (2001) Unsupercised segmentation of color-texture regions in images and video. IEEE Trans Pattern Anal Mach Intell 23(8):800–810

    Article  Google Scholar 

  8. Gilboa G, Osher S (2008) Nonlocal operators with applications to image processing. SIAM Multiscale Model Simul 7(3):1005–1028

    Article  MATH  MathSciNet  Google Scholar 

  9. Goldstein T, Bresson X, Osher S (2009) Geometric applications of the split Bregman method. Segmentation and surface reconstruction. CAM Report 09-06

  10. Han S, Tao W, Wu X (2009) Image segmentation based on GrabCut framework integrating multiscale nonlinear structure tensor. Image Process IEEE Trans 18(10):2289–2302

    Article  MATH  MathSciNet  Google Scholar 

  11. Han S, Tao W, Wu X (2011) Texture segmentation using independent-scale component-wise Riemannian-covariance Gaussian mixture model in KL measure based multi-scale nonlinear structure tensor space. Pattern Recogn 44(3):503–518

    Article  MATH  Google Scholar 

  12. Kass M, Witkin A, Terzopoulos D (1998) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  Google Scholar 

  13. Li L, Jin L, Xu X, Song E (2013) Unsupervised color-texture segmentation based on multiscale quaternion Gabor filters and splitting. Signal Process 93:2559–2572

    Article  Google Scholar 

  14. Lu J, Wang G, Pan Z (2016) Nonlocal active contour model for texture segmentation. Multimed Tools Appl. doi:10.1007/s11042-016-3462-7

    Google Scholar 

  15. Lui D, Scharfenberger C, Fergani K et al (2014) Enhanced decoupled active contour using structural and textural variation energy functionals. Image Process IEEE Trans 23(2):855–869

    Article  MathSciNet  Google Scholar 

  16. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, pp. 416–423

  17. Martin D, Fowlkes C, Malik J (2004) Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans Pattern Anal Mach Intell 26:530–549

    Article  Google Scholar 

  18. Meila M (2005) Comparing clusterings: an axiomatic view. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 577–584

  19. Sagiv C, Sochen A, Zeevi Y (2004) Integrated active contours for texture segmentation. IEEE Trans Image Process 1(1):1–19

    Google Scholar 

  20. Savelonas MA, Iakovidis DK, Maroulis D (2008) LBP-guided active contours. Pattern Recogn Lett 29(9):1404–1415

    Article  Google Scholar 

  21. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  22. Siddiqi K, Lauziere B, Tannenbaum A, Zucker SW (1998) Area and length minimizing flows for shape segmentation. IEEE Trans Image Process 7(3):433–443

    Article  Google Scholar 

  23. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. International Conference on Computer Vision (ICCV), pages 839–846

  24. Unnikrishnan R, Pantofaru C, Hebert M (2007) Toward objective evaluation of image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 29:929–944

    Article  Google Scholar 

  25. Wang GD, Pan ZK, Dong Q, Zhao XM, Zhang ZM, Duan JM (2014) Unsupervised texture segmentation using active contour model and oscillating information. J Appl Math 2014:Article ID614613, 11pages

  26. Wu Q, Gan Y, Lin B, Zhang Q, Chang H (2015) An active contour model based on fused texture features for image segmentation. Neurocomputing 151(3):1133–1141

    Article  Google Scholar 

  27. Xu C, Prince L (1998) Snakes, shapes and gradient vector flow. IEEE Trans Image Process 7(3):359–369

    Article  MATH  MathSciNet  Google Scholar 

  28. Yang AY, Wright J, Ma Y, Sastry SS (2008) Unsupervised segmentation of natural images via lossy data compression. Comput Vis Image Underst 110(2):212–225

    Article  Google Scholar 

  29. Zhou H, Zheng J, Wei L (2013) Texture aware image segmentation using graph cuts and active contours. Pattern Recogn 46(6):1719–1733

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No.61305045), National “Twelfth Five-Year” development plan of science and technology (No.2013BAI01B03, No.2014BAG03B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Lu, J., Pan, Z. et al. Color texture segmentation based on active contour model with multichannel nonlocal and Tikhonov regularization. Multimed Tools Appl 76, 24515–24526 (2017). https://doi.org/10.1007/s11042-016-4136-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4136-1

Keywords

Navigation