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Abstract Saliency prediction models provide a probabilistic map of relative likelihood of an image or video region to attract the attention of 

the human visual system. Over the past decade, many computational saliency prediction models have been proposed for 2D images and videos. 
Considering that the human visual system has evolved in a natural 3D environment, it is only natural to want to design visual attention models 
for 3D content. Existing monocular saliency models are not able to accurately predict the attentive regions when applied to 3D image/video 
content, as they do not incorporate depth information. This paper explores stereoscopic video saliency prediction by exploiting both low-level 
attributes such as brightness, color, texture, orientation, motion, and depth, as well as high-level cues such as face, person, vehicle, animal, text, 
and horizon. Our model starts with a rough segmentation and quantifies several intuitive observations such as the effects of visual discomfort 
level, depth abruptness, motion acceleration, elements of surprise, size and compactness of the salient regions, and emphasizing only a few 
salient objects in a scene.  A new fovea-based model of spatial distance between the image regions is adopted for considering local and global 
feature calculations. To efficiently fuse the conspicuity maps generated by our method to one single saliency map that is highly correlated with 
the eye-fixation data, a random forest based algorithm is utilized. The performance of the proposed saliency model is evaluated against the 
results of an eye-tracking experiment, which involved 24 subjects and an in-house database of 61 captured stereoscopic videos. Our stereo 
video database as well as the eye-tracking data are publicly available along with this paper. Experiment results show that the proposed saliency 
prediction method achieves competitive performance compared to the state-of-the-art approaches.1  
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1 Introduction 
 
When watching natural scenes, an overwhelming amount of information is delivered to the human eye, with the optic nerve 
receiving an estimated 108 bits of information per second [1]. In order for the Human Visual System (HVS) to process this 
volume of visual data, it separates the data into pre-attentive and attentive levels [2]. The former is responsible for identifying the 
regions worth of attention, while the later involves in-depth processing of limited portions of the visual information [2]. 

 In computer vision, there is a strong interest in designing models inspired by HVS that narrow down a large amount of visual 
data to smaller amount of more visually important data. Generally, eye-tracking experiments are used to help us understand what 
catches human attention in a scene. However, eye-tracking devices are not a viable option in many automated applications. 
Instead, Visual Attention Models (VAMs) have been developed to mimic the layered perception mechanism of the human visual 
system by automatically detecting Regions Of Interest (ROIs) in a scene.  

Psychological findings suggest that, in the pre-attentive stage, the visual information of a scene is represented by several 
retinotopic maps, each of them illustrating one visual attribute [3]. These attributes along with higher-level scene-dependent 
information are then analyzed by the visual cortex. Motivated by this fact, visual attention models also predict the locations of 
salient regions using three different approaches: bottom-up, top-down, and integration of the two. Bottom-up saliency detection 
models adopt rapid low-level visual attributes such as brightness, color, motion, and texture to generate a stimulus driven 
saliency map. Top-down approaches, however, utilize high-level context-dependent information such as humans, faces, animals, 
cars, and text for saliency detection in specific tasks. Integrated methods utilize bottom-up and top-down attributes for saliency 
detection [4]. 

There has been a great deal of research done in the field of 2D images and video saliency analysis that resulted in developing 
many successful visual attention models for 2D content [5-16], [82-85]. However, two-dimensional VAMs are usually not 
accurate enough in predicting the salient regions in 3D content, as they do not incorporate the depth information [17-20]. One 
reason is that depth perception changes the impact of the 2D visual saliency attributes (e.g., brightness, color, texture, motion). 
Also, there are several other visual attributes such as depth range, display size, the technology used in 3D display (i.e., active or 
passive glasses, glasses-free auto-stereoscopic displays, etc.), naturalness [21], and visual comfort [22] that solely affect 3D 
attention while they don’t have any impact on 2D visual attention [23-24]. As a result, in order to truly mimic the visual attention 
of the HVS, we need to use 3D-exclusive saliency prediction mechanisms. The points made above and the rapid expansion of 3D 
image and video technologies emphasize the necessity to either extend the current 2D saliency detection mechanisms to 3D data, 
or develop novel 3D-specific saliency prediction methods. 
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The existing literature for 3D saliency prediction offers two 
main groups of solutions. The first group of solutions (earliest 
attempts for 3D saliency prediction) directly uses the depth map 
(or disparity map) as a weighting factor in conjunction with an 
existing 2D saliency detection model. In other words, a 2D 
saliency map is created first, then each pixel (or region) in the 
resulting map is assigned a weight according to its depth 
(disparity) value. Maki et al. [25], Zhang et al. [26], and 
Chamaret et al. [27] used this approach to design their 
computational model for 3D saliency. They mainly design their 
methods based on the idea that generally the objects that are 
closer to the observer are considered to be more salient. Although 
they observed qualitative improvements compared to 2D saliency 
mechanisms, they didn’t provide a quantitative evaluation of the 
proposed methods. Moreover, objects closer to viewers are not 
necessarily more salient. Fig. 1 shows an example where although 
the “ground” is the closest object to viewers, visual attention is 
directed to other parts of the scene.  

The second group of solutions for 3D visual attention 
prediction utilizes the depth information of a scene to create a 
depth saliency map. The depth saliency map is usually combined 
with the 2D conspicuity maps (using the existing visual attention models) to construct a computational model of 3D visual 
saliency. Using this approach, Ouerhani and Hugli [28] proposed an attention model that takes into account the depth gradient 
features as well as the surface curvature. They performed qualitative assessment, but no quantitative assessment against eye-
tracking data was done. Lang et al. [29] proposed a depth saliency map in which they evaluated the statistical probability of 
saliency ratio at different depth ranges using a training database. To validate their method, they also integrated the resulting 
depth saliency map to some other 2D models by summation or element-wise multiplication. Wang et al. [18] incorporated a 
Bayesian approach of depth saliency map generation and combined their map with some existing 2D models through averaging. 
Fang et al. [17] proposed a computational model of saliency for stereoscopic images by taking into account four different 
attributes: brightness, color, texture, and depth. They partitioned each image into patches and considered DC and AC coefficients 
of the DCT transform of each patch as its corresponding features. They generated several feature maps and linearly combined 
them with an emphasis on the compactness property of feature maps. Unlike the above methods that were designed for stereo 
images, Kim et al.’s work [20] was among a few saliency prediction models, which were proposed for stereoscopic videos. They 
adopted a scene type classification mechanism and incorporated several saliency attributes as well as concepts like saliency 
compactness, depth discontinuities, and visual discomfort. The generated feature maps were combined through summation or 
element-wise multiplication. It is common practice for saliency prediction methods to calculate various feature maps and then 
average them into one final map. However, it is not exactly known how the human brain fuses the different visual attributes. 
Examining the importance of each of the features and determining how to properly fuse them to closely imitate the human visual 
system remains a challenge. Another challenge in stereo video saliency prediction is that the accuracy of the existing visual 
attention models are still not very high, especially when compared to the accuracy of 2D visual attention models for 2D video 
[57]. Moreover, most of the existing methods do not provide enough flexibility to be tailored for specific types of video scene 
content (e.g. large motion, natural or synthetic, appearance of high-level attributes like humans, and etc.).   

This paper investigates the computational modeling of visual attention of stereoscopic video by proposing an integrated 
saliency prediction method. The proposed approach utilizes both low-level attributes such as brightness, color, texture, 
orientation, motion, and depth as well as high-level context-dependent cues such as face, person, vehicle, animal, text, and 
horizon. Our model starts with a rough segmentation and quantifies several intuitive observations such as the effects of visual 
discomfort level, depth abruptness, motion acceleration, elements of surprise and size, compactness, and sparsity of the salient 
regions. To calculate local and global features describing these observations, a new fovea-based model of spatial distance 
between the image regions is used. Then, a random forest based algorithm is utilized to learn a model of stereoscopic video 
saliency so that the various conspicuity maps generated by our method are efficiently fused into one single saliency map, which 
delivers high correlation with the eye-fixation data. The performance of the proposed model is evaluated against the results of a 
large-scale eye-tracking experiment, which involves 24 subjects and an in-house database of 61 captured stereoscopic videos. 
This database is made publicly available.  

The main contributions of this paper are as follows: 1) Using several (some existing and some proposed) low-level and high-
level indicative saliency features that have potential in predicting salient regions in a 3D scene. 2) Taking into account the effect 
of biological and intuitive observations in 3D saliency prediction, by modeling natural elements of human visual system into 

 
Fig. 1. Closer objects are not necessarily salient. “Ground” is not considered 
salient in these examples. 
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saliency features. 3) Combining the candidate saliency features in a learning-based framework to generate an overall saliency 
map per frame which has high correlation with the eye-tracking data. 4) Using the results of eye-tracking experiments to analyze: 
the contribution of each feature, benchmarking the performance of various 3D VAMs, and evaluate the statistical difference 
between the 3D VAMs.  

We propose a flexible framework to learn from any desired saliency feature, to predict saliency for unseen stereo video data. 
We also propose a suggested set of low-level attributes such as brightness, color, texture, orientation, motion, and depth as well 
as high-level context-dependent cues such as face, person, vehicle, animal, text, and horizon. These are suggested set of features, 
however, any other feature can be added or removed. 

The rest of this paper is organized as follows: Section 2 explains the proposed saliency prediction method, Section 3 elaborates 
on the database creation, and subjective tests, results and discussions are provided in Section 4, and Section 5 concludes the 
paper. 

 
2 Proposed saliency prediction method 
 
Our proposed visual attention model takes into account various low-level saliency attributes as well as high-level context-
dependent cues. In addition, several intuitive observations are quantified and considered in the design of our VAM. Once the 
feature maps are extracted, a random-forest-based algorithm is used to train a model of saliency prediction. Note that the 
extracted feature maps are “indicative” features that are likely to reflect the salient regions. The proposed learning-based fusion 
model combines the extracted features to generate the overall saliency maps. In Section 4, we provide the importance of each 
individual feature along with the additional computational complexity it causes. The flowchart of our method is illustrated in Fig. 
2 and the following sections elaborate on details of our model. 

 
2.1 Bottom-up saliency features 
 
The proposed model includes luminance, color, texture, motion, and depth as low-level saliency features. Each of them is explain 
in the following sub-sections. Note that since the position of objects is slightly different between the left and right views, with 
the exception of depth features, the rest of the features are extracted from the view of the video for which the depth map is 
available. In our experiments, for each video both the left and right views are initially available. We calculate the left-to-right 
disparity (which corresponds to disparity map of the right view) using the Depth Estimation Reference Software (DERS) [30]. 
Therefore, the right view is used for computing the 2D saliency attributes. The motivation behind the selection of the right view 
is that humans are mostly right-eye dominant (approximately 70%) [31]. 
 

 
 

 
Fig. 2. Proposed computational model for visual saliency prediction for stereoscopic video. 
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1) Segmentation 
During the pre-attentive stage of HVS, the visual information of each scene is partitioned to different regions. Computational 

resources are then allocated to each region based on its relative importance (when we look at a scene, we visualize it as a set of 
patches, not a grid of pixels). Similarly, we perform a rough segmentation on the right view picture and assign bottom-up 
saliency attributes to each segment separately, by averaging the specified pixel-wise saliency values over each segment. In our 
implementation, we use the Edge Detection and Image Segmentation (EDISON) System proposed by Comanicu et al. [32]. Note 
that similar to computational resource allocation performed by the HVS in the pre-attentive vision, we use the segmentation only 
for generating the saliency features. For combining the generated features and producing an overall saliency map, we use the 
proposed random forest based feature fusion model. 
 

2) Brightness map 
Studies have shown that human attention is directed towards areas with higher brightness variations in a scene [5,7]. In our 

model, we include a map of local brightness variances. To this end, each frame of the right view is transformed to the YUV color 
space first. Then, local variances are calculated in a circular neighborhood around each pixel using the following formula: 
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where Yx and Yi represent the brightness intensity values of the center pixel and surrounding pixels respectively, NHOOD is a 
circular neighborhood, x denotes the current pixel, and i is pixel index over the outer circular area. The choice of size and shape 
of the outer area used for variance calculation is based on the fovea photoreceptor concentration, which is explained in Section 
2.1.7. The variance map for each frame is normalized to [0-1]. The resulting brightness variance map contains local brightness 
variances. However, attention is directed towards certain areas of an image based on both local and global scene properties. 
Therefore, we adjust the value of the brightness variance map for each pixel as follows: For each pixel, the weighted average 
difference between its brightness variance and the brightness variance of the surrounding pixels is calculated, resulting in a 
brightness variance contrast map. This process is known as “center-surround operation”, and the Differences-of-Gaussians 
(DoG) are common approaches for computing differences [5]. Here, instead of the Gaussians, we use a circular mask, which is 
designed based on fovea photoreceptor concentration (See II.A.7). Hereafter, we refer to this mask as “fovea mask”. The fovea 
mask assigns different weights to different pixels based on their distance from the pixel located at the center of the mask. The 
center-surround operation for globalizing the variance map is performed as follows: 
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where SK
Brightness is the saliency value assigned to the Kth region (RK), nK is the number of pixels in the Kth region, i denotes the ith 

pixel in the current segment, j is the jth pixel in the fovea mask centered at i, and Vardiff is the difference between ith and jth pixels 
in the brightness variance map (obtained from (1)). The center-surround operand results in a brightness variance contrast map in 
which every segment (or roughly every object) is assigned with one saliency probability. 

It is worth noting that while the proposed brightness variance contrast map captures the second order variations in brightness 
(contrast in the variance of brightness), we also follow what is considered a common practice in literature by adding a brightness 
contrast map that captures the first order brightness variations in a scene. Brightness contrast for each region is calculated similar 
to the brightness variance contrast map mentioned above. The only difference is the usage of the brightness contrast instead of 
the brightness variance contrast. 
 

3) Color maps 
Color is one of the most important channels among human senses, accounting for 80% of the visual experience [33]. For the 

proposed model, the following feature maps are extracted from the color information of each scene: 
Color histogram map: Naturally, humans tend to look at the objects with colors that stand out in a scene, i.e., rare colors tend 

to attract human attention. To account for the effect of color rarity, we compute a color histogram for each picture, based on the 
occurrence probability of each of the three color channels in the RGB space (each channel represented by 8 bits). Suppose 

p(R=r, G=g, B=b)=P. We define the values of P

P

e
−

as a saliency map related to color rarity and call it “histogram saliency map” 

( P is the average of P). The exponential function is particularly chosen to project the probability values in the interval [0-1] and 
exposes a local maximum where a color is rare.  

Color variance contrast maps: HVS is highly sensitive to color contrast. Similar to the brightness variance contrast map 
generated before (see II.A.2), two new color saliency maps are created for a* and b* color components in the CIE L*a*b* domain. 
This color space is particularly chosen because of its uniform chromaticity properties [34]. 

Warmth and saturation color maps: Experiments showed that warm and saturated colors are generally salient to HVS [35-36]. 
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Warm colors dominate their surroundings regardless of the existence of color contrast in the background [36]. Highly bright and 
saturated colors are salient regardless of their associated hue value [36]. The reason is partially due to the eye sensitivity to these 
types of colors [34], and partially due to human natural instincts, which interpret warm and saturated colors (e.g., saturated red) 
as a potential threat. To account for the effect of warm colors, the color temperature of the right view picture is calculated first. 
In general, warm colors correspond to low temperatures and vice versa. The color warmth map is defined as the inverse of the 
color temperature map. To account for saliency based on saturation of colors, we follow the saturation formula of Lübbe [37]: 
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where L* is the lightness (brightness) and C*
ab denotes the chroma of the color calculated as: 

2*2** baCab +=                                 (4) 

HVS color sensitivity map: Generally, human eyes have different perception sensitivity at different light wavelengths. We use 
the CIE 1978 spectral sensitivity function values [34] at different wavelengths to locate the image regions for which eyes are 
more sensitive to the light. To this end, the dominant wavelength for a table of spectral colors (monochromatic colors) is 
computed first [38]. We assume that the image colors are monochrome (note that conversion from RGB values to light 
wavelength is not possible for non-monochrome colors, as each color can be represented by many combinations of R, G, and B 
values at different wavelengths). Then, for each pixel of the right view, the closest spectral color and thus its associated dominant 
wavelength are selected from the available look-up table. The eye sensitivity at each wavelength is depicted as a map of 
sensitivity probability.  

Empirical color saliency map: Several subjective studies have been carried out to test the visual attention saliency of colors 
using eye-tracking information [35,39]. In these studies, shapes of different colors are shown to the viewers and based on the eye 
fixation statistics conclusions are made on the saliency of various colors. Gelasca et al. [39] sorted 12 different colors based on 
their received visual attention. We use the results of their experiment to build a look-up table for these colors. Then, for each 
pixel within the right view picture, a saliency probability is assigned based on the closest numerical distance of the RGB values 
of that pixel and the table entries (mean squared error of the R, G, and B values).  

It is worth noting that we use the RGB color space for the color histogram map and empirical color saliency map, as for the 
former case we don’t use the color differences directly, and for the latter case we use the empirical color saliency probabilities 
from 12 distinctly different colors. Our experiments verified the efficiency of our choice of color space for these features. 
 

4) Texture map 
Texture and orientation of picture elements are among the most important saliency attributes [4]. To generate a texture 

saliency map, we utilize the Gabor filters (which are widely used for texture extraction) to create a Gabor energy map at 4 
different scales and 8 orientations. The L2 norm of the Gabor coefficients results in a Gabor energy map. Since image texture is 
perceived locally at each instance of time, we apply our fovea mask to the Gabor energy map to generate a texture map that 
contains the edges and texture structure of the image. However, not every edge or image structure is salient. To emphasize 
salient edges and de-emphasize non-salient texture, we create an edginess map and multiply (element-wise) it by the current 
texture map. Edginess per unit area is defined by: 
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where RK denotes the region K, nK is number of pixels, and Edgemap contains the edges for the Kth region. Note that edge maps 
are available as a part of the segmentation algorithm explained previously. Our choice of Edgemap ensures that areas with dense 
edges are assigned with higher saliency probabilities compared to areas with sparse edges.  
 

5) Motion maps 
Due to humans’ biological instincts, moving objects always attract human attention. In 3D, there exist three different motion 

directions: horizontal (dx), vertical (dy), and perpendicular to the screen (dz). Moreover, since it is not clear which one of these 
directions or which combination of them implies higher impact on the visual saliency, we generate one motion vector for each 
direction, keep them as separate motion maps, and examine the importance of each attribute using our random forest learning 
algorithm (Section 2.3). 

To extract horizontal and vertical motion maps (Dx and Dy) for right view frames, we incorporate the correlation flow 
algorithm by Drulea and Nedevschi [40], as this method has shown promising performance on various datasets and is publicly 
available. Motion along the Z direction particularly exists for 3D video and does not appear in the 2D case. To extract the motion 
vector along the Z direction, we utilize the available depth information (more details on the availability of depth data is presented 
in Section 2.1.6) as follows:  
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where RefDepth(ix,iy) is the depth value of the ith pixel of a reference frame (or previous frame) with horizontal and vertical 
location of x and y, and CurrentDepth(ix+dx,iy+dy) is the depth value of the ith pixel in the current frame with horizontal and 
vertical coordinates of ix+dx and iy+dy. Note that dx and dy are calculated using the optical flow algorithm of [40] and 
(ix+dx,iy+dy) in the current frame is the approximate location of (ix,iy) in the previous frame. 

When training a regression algorithm (in machine learning in general), it is a common practice to normalize the feature values. 
This generally helps the training by avoiding bias towards a particular feature subset. Two most common ways of achieving this 
are: 1) normalization by scaling (e.g. scale to 0-1), and 2) standardization (use mean and standard deviation values of the features 
to form a standard Gaussian distribution). We choose the former approach to be consistent with other feature maps. To this end, 
once the Dx, Dy, and Dz maps are generated, they are normalized to the interval of [0-1] (on a frame-by-frame basis). Note that 
in our experiments we found out that normalization slightly improves the regression accuracy. Also, note that we did not 
examine the standardization approach, or any other alternative method to relate Dx and Dy to Dz.  

Next, for each segment of the right view, the average motion value is assigned to that segment under the assumption that 
object motions are homogeneous. Note that while the classical averaging operator is used here, median, mode, minimum, or any 
other meaningful operator can be also used. The following motion maps are used in our method: 

Velocity: Velocity in different directions is defined as: 

dzfrVdyfrVdxfrV zyx )1(,)1(,)1( −=−=−=      (7) 

where fr is the frame rate of the stereoscopic video. Note that frame rate is of particular importance in 3D as motion highly 
affects the 3D video Quality of Experience (QoE) [41-42]. The velocity vector magnitude is evaluated as: 

222
zyx VVVV ++=                                (8) 

Velocity with emphasize on Vz: Due to humans’ survival instincts, objects that are on a collision path towards them are treated 
as a possible threat. Therefore, attention is directed towards them [43]. Inspired by this fact, we modify the velocity vector, 
emphasizing the velocity in the Z direction. Thus, Dz is re-defined as: 

11 −= dzeDz                                      (9) 

Using the new Dz value, the velocity vector in Z direction and then the velocity vector for each segment are re-calculated. The 
resulting map is referred to as Vz-emphasized. 

Acceleration: Objects with relatively high acceleration are generally considered to be salient. We add a map of relative 
acceleration to our set of motion saliency maps by computing the acceleration using the following formula: 
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Element of surprise: One of the differences between saliency prediction in images and videos is the possible introduction of an 
element of surprise in video, which turns the attention towards itself. To account for the effect of unusual motion, we emphasize 
on the saliency of segments with small motion vector occurrence probabilities. To this end, we define a motion histogram map in 
the range of [0-1] as: 

p

mvp

yprobabilit eM
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=                             (11) 

and use it as a feature for saliency prediction. In the above equation, mv represents the motion vector (dx, dy, dz), and )(mvp is 

the joint probability density function of uniformly quantized 3D motion directions in the current stereo frame. 
 

6) Depth saliency map 
As mentioned previously, in our method we extract the left-to-right disparity map using the DERS [30] software. However, 

the same disparity values in a disparity map could correspond to different perceived depths depending on the viewing conditions. 
Therefore, we use the disparity map to generate a depth map for the right view picture. Fig. 3 illustrates two similar triangles 
when an observer is watching a 3D video. Writing down the trigonometry equations gives: 
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where Zobserver represents the distance of the viewer’s eyes to 3D screen (183 cm in our experiments), Leyes is the inter-ocular 
distance between the two eyes (on average 6.3 cm for humans), and W and RW are the horizontal width (in cm) and resolution (in 
pixels) of the display screen, respectively. Note that this method of disparity to depth conversion results in read-world depth 
values (in cm) and has been similarly used by other colleagues [17-18]. Also, note that our saliency prediction mechanism 
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requires a disparity which does not necessarily have to be generated using DERS. Any disparity detection algorithm can be used 
for disparity map generation.  

A depth map can be incorporated to create a depth saliency map in which closer objects are assigned higher saliency values. 
To create such a map, the inverse of depth values is linearly mapped to [0-1]. The resulting map, however, does not demonstrate 
the saliency perfectly since not every close object is salient (See Fig. 1 for a counter example). An object that stands out due to 
its depth is likely to have depth values that abruptly change compared to its neighborhood. The depth value of the object itself is 
often smooth and its depth contrast is low. Visual attention is directed to objects with lower inner disparity contrast [44] but vary 
abruptly outside their depth value [19]. To account for this fact, a depth abruptness mask is created in which the mask contains 
high values when depth changes abruptly (and contains values close to zero in case depth is changing smoothly).  

To create the depth abruptness mask, four points are selected around each segment (See Fig. 4 for an illustration). We observe 
that P1 and P3 have the same horizontal coordinates as the center of mass (centroid) of the segment, while P2 and P4 share the 
same vertical coordinate with the centroid. Suppose d1, d2, d3, and d4 are the highest horizontal and vertical distances from the 
center of mass of the segment to any point on the segment perimeter towards up, right, down, and left side directions, 
respectively. The four selected points are located at P1:( H010dCC 1yx ×−− ., ), P2:( y2x CW010dC ,. ×+ + ), P3:(

H010dCC 3yx ×++ ., ), and P4:( y4x CW010dC ,. ×−− ), where H and W are the height and the width of the display screen. 

These four points are likely to fall within neighbor segments and therefore, can be used to evaluate the depth change rate. Note 
that studies have shown that objects’ sizes affect their visual saliency [45]. Walther et al. used a threshold of 5% for the 
minimum suitable area of a salient region. Our experiment settings (are explained in details in Section 3) suggest using an area 
threshold of 1% due to the utilized display size and viewers’ distance. As a result, we add 1% of the display height to d1 and d3 
and 1% of the display width to d2 and d4 to reach the four points. Next, for each segment and its associated set of selected points 
we find the weighted average of depth differences between the points and the centroid, and assign the resulting average value to 
that segment. Continuing this process for all of the segments generates a depth difference map, DiffDepth. The weights in finding 
the average difference are equal to inverse of the distances between each Pi point and the centroid. The depth abruptness for each 
segment is defined as follows: 


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where DiffK
Depth represents the depth difference associated to the Kth segment. In our formulation, we interpret a local depth 

difference of higher than average as an abrupt change and a depth difference of lower than average is referred to as a relatively 
smooth change. The final depth abruptness mask for each frame is normalized to the interval of [0-1]. Note that since synthetic 
depth maps can always contain artifacts, in our implementation we choose multiple (three in the present embodiment) close 
points instead of only one point at each direction to increase the robustness of the process against the depth map artifacts. These 
multiple points are selected very close (a few pixels away) to each Pi point. Also, note that instead of four neighboring points, 
one can choose eight neighboring points (with 45O rotations), or a scanning line in each of the four directions to measure the 
maximum depth differences. Our simulation experiments, however, verified that the additional accuracy is negligible compared 
to the added computational complexity. 

We perform a slight smoothing (using a simple Gaussian filter) on the depth image to prevent the imperfections that can be 
caused by depth map artifacts. To create the final depth saliency map, we multiply the depth abruptness mask (element-wise) by 
the current segmented depth map. The depth saliency map is linearly normalized to [0-1] at the end. 

 
Fig. 3. Disparity to depth conversion scheme viewed from above.  

Fig. 4. Creating a depth abruptness mask: An example segment with four
selected points around it.  
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7) Fovea masking 

When focusing on a specific region of an image, HVS perceives the neighborhood around that region very sharply but as the 
distance from the center of attention is increased the rest of the picture seems blurry to the human eye. This is due to the 
photoreceptor concentration density in fovea, which decreases from the center of fovea rapidly [46].  

As mentioned previously in this section, we incorporate a fovea-masking-based center-surround operation in generating some 
of the proposed feature maps. Inspired by the photoreceptor concentration in the fovea, in our implementation, this mask is a 
circular disk in which the value of each element is proportional to the photoreceptor density of the corresponding location. We 
use the photoreceptor density values resulted from subjective biological measurements [46] to assign an approximate estimate of 
the photoreceptor density at each distance from the center of fovea. We use interpolation between these distances to design a 
continuous kernel. Radius of the mask is defined based on the size of the display and distance of the viewer from the display. 
Suppose α is half of the angle of the viewer’s eye at the highest visual acuity. The range of 2α is between 0.5° and 2° [47]. 
Sharpness of vision drops off quickly beyond this range. The mask radius is approximately defined by: 

][][
)tan(

)tan( pixel
Hobserver

cmobserver
H

RZ
ZL

α
α ==        (14) 

where H and RH are the vertical height and resolution of the display, and Zobserver is the distance of the viewer to display. In our 
implementation (explained in Section 3), we choose an angle of α=1o, HD (High Definition) resolution video at 1080×1920, 
viewing distance of 183 cm, and display height of 57.25 cm. The resulting mask radius for this setup is approximately 60 pixels. 
 
8) Size, compactness, and sparsity of salient regions 

As already mentioned, psycho-visual experiments have revealed that object size affects the saliency [45]. In our method, 
segments with size of less than 1% of the resolution in each direction are not considered as salient. In addition to size of the 
regions, compactness of each region affects its visual saliency. Due to the nature of the eye-tracking studies (and similarly in 
reality), human attention is directed towards compact objects [20]. This makes more sense considering the fact in video saliency 
prediction there are only a few fixations per frame, which mostly are associated with compact objects. To account for the effect 
of object compactness, the moment of inertia for each segment is chosen as a compactness measure [48]. A map of compactness 
is then created in which each segment is associated with its compactness value. This map will be applied as multiplicative mask 
to all feature maps.  

Another important factor regarding the saliency of objects is that there are only very few salient objects in each scene. Given 
the allocated time for human viewers to view each frame of a video and hardware capability to record their eye fixations data, 
there are only a couple of fixations per frame. Therefore, a proper saliency prediction algorithm should extract only a few highly 
probable salient regions. To account for the sparsity of the salient regions, we propose a mechanism that puts emphasis on local 
maxima points in the available feature maps. Assuming a feature map is scaled to [0-1], we seek a convex function that projects 
this feature map to another map with the desired properties. One candidate for such operation is: 

F
F meF −=Φ )(                               (15) 

where F denotes a feature map and mF represents the average of F. Since F values are within [0-1] then the values of Φ fall 
within [1-mF,e-mF]. For the F values equal to mF, Φ would approximately become 1 (normally, there are only a few salient 
regions in each frame. Therefore, for a sparse saliency map, mF is very small since it is equal to the average of saliency 
probabilities). The F values above the average are subject to higher increments compared to F values below the average. Once 
the resulting Φ-map is rescaled to [0-1], the local maxima points are relatively more amplified than the points with feature values 
below average. Rescaling is performed linearly as follows: 

minmax

min

Φ−Φ

Φ−Φ
=Ψ                              (16) 

9) 3D Visual Discomfort 
When watching stereoscopic content, several reasons may degrade the 3D quality of experience. Assuming that the 3D display 

does not have any crosstalk and the data is captured properly without any unintended parallax, the main source of discomfort is 
caused by the vergence-accommodation conflict [49]. When viewing stereoscopic 3D content, there is a comfort zone for the 
content within which the objects should appear. Any region perceived outside of the comfort zone degrades the 3D QoE, as eye 
muscles try to focus on the display screen to perceive a sharper image while they also try to converge outside of the display 
screen to avoid seeing a double image. This decoupling between vergence and accommodation results in fatigue and degrades 
the QoE. Studies suggest using a maximum threshold for 3D content disparity. In particular as a rule-of-thumb, it is widely 
accepted to use maximum allowed of 1o disparity [49]. Beyond this threshold QoE drops rapidly.  

Viewers tend to avoid looking at regions of a 3D scene which impose 3D visual discomfort. The visual discomfort pushes the 
viewers to move their gazed points away from the source of discomfort. To account for 3D discomfort, we create a discomfort 
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penalizing filter and apply (element-wise multiplication) it to our depth feature map as it represents the 3D saliency attributes. 
The discomfort penalizing mask elements are assigned to 1 when a segment falls within the comfort zone and to a penalty value 
when the segment is outside of the comfort zone. Several quantitative measures of 3D visual discomfort are proposed so far. We 
don’t limit our visual attention model to any particular discomfort measurement as it is not yet clear how exactly discomfort can 
be measured. The choice of the discomfort metric does not affect our proposed penalizing scheme. However, for the sake of 
illustration, we choose a simple discomfort metric, which is based on subjective visual experiments presented in [49]. By 
averaging the 3D QoE values of [49] for various types of content at different resolutions and disparity ranges, we derive the 
following rough estimate for the penalizing mask: 





>×−
≤

= arcminutes

arcminutes

60006.036.1

601

ddisparity

d

Mask
Discomfort       (17) 

In our experiment setup, 1o disparity corresponds to 60 pixels.  
 

2.2 High-level saliency features 
 
In addition to low-level bottom-up saliency features, we add several high-level top-down features to our model. The use of high-
level features helps to improve the accuracy of saliency prediction. The following high level features are considered in our 
method: face, person, vehicle, animal, text, and horizon. For each feature, a saliency map (using a bounding box around the 
detected salient region) is created and used in the training of the proposed visual attention model. 

When a human appears in a video shot, the observer’s attention is naturally drawn to the person. In order to detect faces and 
appearance of people in a scene, we use the Viola-Jones algorithm [50] and Felzenszwalb’s method [51] (trained on the 
PASCAL VOC 2008 dataset [52]), respectively. Felzenszwalb’s method [51] is also used to detect the presence of bicycles, 
motorbikes, airplanes, boats, buses, cars, and/or trains. The same method is incorporated to detect animals including birds, cats, 
cows, dogs, horses, and/or sheep.  

Image areas containing text also attract the human attention. To account for the appearance of text we use the Tesseract OCR 
(Optical Character Recognition) engine [53]. In addition, Gist descriptor is used to detect a horizon in the scene, which itself is 
shown to be potentially a salient feature [54]. 

Fig. 5, demonstrates generated feature maps for a sample video frame. Note that the feature maps provided in Fig. 5 are just 
samples generated from a sample frame. The overall performance of the features are evaluated in Section 4. 

 
2.3 Feature map fusion based on random forests 
 
Since it is not clear how map fusion happens in the brain, computational models of visual attention use different approaches. On 
one hand, some approaches integrate the features internally and do not produce several separate feature maps [8-10,15,16]. One 
the other hand, other methods incorporate linear [5-6,12-13,14], SVM (support vector machine) [7], or deep-networks-based map 
fusion schemes [55]. In the case of 3D visual attention modeling, map fusion is mostly performed by linear combination [18-20].  

In our approach, we utilize random forest regression for fusing the different feature maps generated by our method. Random 
forests regression is an ensemble learning method that constructs a multitude of decision trees at training time and outputs the 
mean prediction (regression) of the individual trees. Random decision forests correct for decision trees over-fitting problem. 
More details regarding random forests can be found in [86]. 

The motivation behind this tool selection is explained below. Random Forest (RF) methods construct a collection of decision 
trees using random selection of input features samples [56]. Generally, each decision tree might not perform well over unseen 
data. However, the ensemble of the trees usually generalizes well for test data. This follows the structure of HVS (and also the 
proposed feature extraction process) in incorporating several visual features. Each feature on its own may not predict the saliency 
well, but integrating various features provides a much more accurate prediction. One of advantages of RF regression techniques 
is that they do not require extensive parameter tuning since they intuitively divide data over the trees based on how well they 
classify the samples. Moreover, the importance of each individual feature can be evaluated using the out-of-bag-errors once a 
model is trained. This makes it possible for our proposed method to find an assessment of how important each feature is in the 
saliency prediction, so that an appropriate decision can be made on the trade-off between number of features (complexity) and 
prediction accuracy. Note that other learning frameworks can be substituted with random forest. However, due to reasons 
mentioned above, we utilize random forests approach in our method. As we will see in section 4, using random forests for feature 
fusion shows a promising performance, superior to some existing alternative methods.   

It is also worth noting that random forest involves with sampling the training data (bootstrapping) with replacement. In this 
sampling, a percentage of the data (usually 30%) is not used for training and can be used to testing. These are called out-of-bag 
samples. Error estimated on these out of bag samples is the out-of-bag-error, which has proven to be unbiased in many tests [72]. 
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For a set of training videos (details in Section 3), we extract different feature maps and use them to train a RF regression 
model. Bagging is applied to tree learners to construct the decision trees. The resulting RF model is later used to generate a 
saliency map for unseen test features. In addition, the importance of each feature helps to decide what number of features to use. 

 

 

 
Fig. 5 Generated feature maps using the proposed method: Images from left to right in a raster-scan order are: Right view picture, 
human fixation map, disparity map, brightness feature, color histogram feature, color contrast feature of a*, color contrast feature of 
b*, color warmth, color saturation, HVS color sensitivity feature, empirical color saliency feature, depth feature, face, horizon, 
motion dx, motion dy, motion dz, velocity magnitude, velocity magnitude with emphasize on Z direction, acceleration, element of 
surprise, person, text, texture, vehicle, animals 
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3 Experiment Settings 
 
This section provides a brief overview about our stereoscopic video database and subjective experiments. Complete details 
regarding the video database as well as the eye-tracking experiments can be found in [57] where we introduce our benchmark 
saliency prediction database. 

 
3.1 Stereoscopic video database capturing 
 
To this date (to the best of our knowledge), the only publicly available stereoscopic video databases for saliency prediction 
experiments are the EyeC3D [58] and the IRCCyN [59] datasets, which contain 8 and 47 stereoscopic videos, respectively. To 
create a large-scale stereoscopic video database with ground-truth eye-tracking data, we captured 61 indoor/outdoor sequences 
with a wide range of depth, motion, brightness, and texture density. There is roughly an equal number of scenes with and without 
humans. Similarly, we tried to include an equal number of scenes with and without moving vehicles. In general, it is ensured that 
the database includes scenes with a variety of different combinations of objects of interest in front or at the back of the screen, 
high and low brightness, fast, medium and slow motion, dense and sparse texture, with and without vehicles and/or humans. The 
length of each video sequence is approximately 10 seconds. 

 
3.2 Post-processing the captured videos 
 
Disparity correction was performed to bring the objects of the interest on the display screen (within the 3D viewing comfort 
zone). This is common practice, as studies have shown that this is preferable compared to letting objects appear in front of the 
screen [60] (See [41] for more details). 

 
3.3 Subjective experiments 
 
Eye fixation points of the participants are tracked using a SMI iView X RED device [61]. The eye-tracker is placed between the 
subjects and a 3D TV in a way that the requirements of the SMI system are met. The sampling frequency of the SMI is 250 Hz 

and the resolution accuracy is o0.030.04 ± . To display the test material, a 46” Hyundai S465D 3D TV with passive glasses is 
used. Resolution of the display is the same as the video sequences (HD, 1080×1920), avoiding rescaling the video content on the 
screen.  

A total of 24 subjects participated in our experiments, with ages ranging from 20 to 30. Having 61 videos each around 10 
seconds long, accumulated to about 10 minutes of actual test time per each subject. All participants were screened for visual 
acuity (Snellen charts), color blindness (Ishihara chart), and stereovision acuity (Randot test) to ensure they were eligible to do 
the test. Moreover, they were naïve regarding the test purpose. Each test session was a free-viewing task, i.e., subjects were just 
asked to view the video sequence without any specific task to do. To ensure accuracy of eye tracking, a calibration step was 
performed for each subject several times, at the beginning and throughout the test so that the eye-tracker did not lose the track of 
the eye movements. More details regarding the subjective experiments can be found in [57]. 

Once the gazed point data for all subjects are collected, eye-fixation maps are created from the gazed points by using a 
Gaussian filter. As suggested by the state-of-the-art [7,17,18,29,57], we use a Gaussian filter with one degree (of visual angle) 
standard deviation. 

 Our database of stereo videos as well as the eye-tracking data are available at http://dml.ece.ubc.ca [57].  
 
4 Results and Discussions 
 
This section elaborates on the results of our experiments and compares the performance of the proposed saliency prediction 
method with that of the state-of-the-art.  

 
4.1 Metrics of performance 
 
A primary metric of performance in our analysis is the Receiver Operating Characteristics (ROC) and the Area Under the ROC 
Curve (AUC) [62]. The classic definition of ROC imposes a bias towards the center, which can significantly affect the accuracy 
of the AUC metric [16,62]. Shuffled AUC (sAUC) is a modified version of AUC, which tackles this issue [16,62] and provides 
more robustness.  
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Other than the AUC and sAUC, in our performance evaluations 
we use the Earth Mover’s Distance (EMD) metric [63] to account 
for the spatial distance in the saliency maps (not only the 
ordering), Kullback-Leibler Divergence (KLD) [64], Normalized 
Scanpath Saliency (NSS) [62], Pearson Correlation Coefficient 
(PCC), as well as a similarity measure, SIM, proposed by Judd et 
al. [65]. Note that except KLD and EMD which are distance 
metrics, the higher the metric values are, the better the 
performance is. 

 
4.2 Contribution of each proposed feature map 
 
A total of 24 sequences were selected for training the random forest model and the rest (37 videos) were used for performance 
validation. We categorized the videos in a way that both the training and validation sets contain videos with a wide variety of 
possible scenarios of depth range, brightness, motion, etc. The training set is used to train a random forest model with all 24 
features. We chose 40 trees for training the random forest and around 7% of the training data (540 frames) for fast 
implementation. The impact of learning parameters is investigated in the next subsections. The resulting model achieves 
AUC=0.7243, sAUC=0.7795, EMD=0.4528, SIM=0.2966, PCC=0.2620, KLD=0.1289, and NSS=1.4167. 

The use of random forest ensemble learning makes it possible to extract the relative importance of each feature compared to 
other ones by comparing their corresponding “out of bag” error values. Table 1 shows the relative feature importance values. We 
can observe that among the high-level features, the presence of humans is of the highest importance. Among the low-level 
features, motion, brightness, depth, and color are the most important ones in saliency prediction. Note that since there are no 
animals in the scenes, the importance value for this feature is equal to zero. Due to the flexibility of the incorporated learning 
method, any of the existing features can be removed from the model, or new features can be added. 

Fig. 6.(a)-(c) show the performance metrics as functions of the number of features, when the first i (i=1,2,…,24) important 
features are used. The results in this figure verify that higher performance is achieved by using a larger number of features. 
However, higher number of features increases the complexity for both training and validation. An analysis of complexity is 
provided in subsection 5. It is worth mentioning that according to Fig. 6.(a)-(c), using only the first 12 important features (half of 
the features) results in 95.5% percent (in terms of sAUC) of the highest algorithm performance (when the entire feature set is 
used). 

We also evaluated the saliency detection performance of only the low-level features, i.e., the ones extracted from brightness, 
color, texture, motion, and depth. This helps us understand the influence of low-level and high-level features in visual attention. 
To this end, a model was trained using the low-level features and was tested using the validation set. The resulting metric values 
are 0.7019, 0.7565, 0.5107, 0.2663, 0.2529, 0.1505, and 1.2948 for AUC, sAUC, EMD, SIM, PCC, KLD, and NSS, respectively. 
The resulting values are close to the ones corresponding to the proposed model with the entire feature set. This shows that while 
our model performs fairly well using only the low-level features, it achieves its highest performance when all features are used. It 
is worth noting that using a larger number of features results in higher computational complexity. The proposed framework 
provides flexibility for users to select a suitable point of trade-off between the accuracy and complexity. An analysis of 
complexity is provided in subsection 5. 

 
4.3 Tuning the training parameters 
 
In this subsection we study the impact of each parameter in the model performance. 

1) Size of the training data: Using a different number of frames from each training video may change the learning 
performance. The training video dataset consists of 24 stereoscopic videos. In the present implementation, we pick the first 20-
to-25 frames of each video (540 frames in total). To investigate the impact of the size of the training data, we select different 
number of frames from each sequence to train new models. Performance evaluations show that, in general, even using a small 
portion of the training dataset results in an acceptable accuracy and that the saliency prediction accuracy is not highly sensitive to 
the size of the training dataset. Fig. 6.(d)-(f) show the performance of our VAM for different sizes of the training data.  

2) Random forest parameters: In the ensemble random forest learning method, we used boot strapping with sample ratio of 
1/3. The minimum number of observations per tree leaf is set to 10. In the current implementation, the number of trees is set to 
40 for a fast performance. To study the impact of the number of trees on the saliency prediction, we train additional models with 
different number of trees, and evaluate their performances over the validation video set. We observe that choosing different 
number of trees, between 1 and 100, results in very smooth variations in the performance metrics, with slight improvement as the 
number of trees increases. However, choosing a very large number of trees possibly results in over-fitting and may degrade the 
overall performance (See Fig.6.(g)-(i)).  

Table 1. Relative Feature Importance (RFI) 

Feature RFI Feature RFI 
Motion2 (Dy) 1 Face 0.67 

Person 0.92 Motion4 (V) 0.61 
Brightness Var. Contrast 0.89 Color3 (Saturation) 0.57 
Color4 (HVS sensitivity) 0.88 Motion7 (Surprise element) 0.55 

Depth 0.85 Color1 (histogram) 0.52 
Motion1 (Dx) 0.84 Color7 (Contrast-a′ ) 0.52 

Brightness Contrast 0.80 Color6 (Contrast-b′ ) 0.52 
Color2 (Warmth) 0.78 Motion5 (Z-emphasis) 0.47 

Motion6 (A) 0.70 Color5 (Empirical) 0.39 
Motion3 (Dz) 0.70 Text 0.25 

Texture 0.69 Horizon 0.18 
Vehicle 0.68 Animals 0 
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4.4 Comparison with different map fusion approaches 
 
It is common practice to fuse various conspicuity maps into a 
final saliency map. The proposed random forest approach 
combines the individual maps efficiently and according to 
their relative importance. To demonstrate the strength of 
random forests in map fusion, we provide a comparison 
between the performance of our model and different fusion 
schemes adopted in the state-of-the-art methods. In 
particular, we compare our method against: 1) Averaging 
(finding the average of different conspicuity/feature maps), 
2) Multiplication, 3) Maximum, 4) Sum plus Product (SpP), 
5) Global Non-Linear Normalization followed by Summation (GNLNS) [11], 6) Least Mean Squares Weighted Average 
(LMSWA), 7) Standard Deviation Weight (SDW), and 8) Support Vector Regression (SVR). 

Table 2 shows the results of these fusion methods and our random forest approach, clearly indicating that our fusion 
outperforms the other types of map fusion.  

 
4.5 Computational complexity 
 
As mentioned in the previous sub-sections, the proposed learning-based framework provides the flexibility to add/remove 
additional saliency features. While some of the features are easier to extract, some might introduce more overall computational 
complexity. The present embodiment uses 24 low and high level features, however, depending on the type of scenes and desired 
accuracy and computational cost, users may choose different number of features to train the model. Fig. 7 shows the simulation 
runtime for our model when different number of features is used. To generate this figure, we used the model parameters 
mentioned in sub-section 4.2 (540 training frames from 24 video sequences, and 40 trees). Order of the features is according to 
Table 1, starting from most important feature to the least important one. Note that since training is performed only once, a 

Table 2. Evaluation of Different Feature Fusion Methods 

Fusion Method AUC sAUC EMD SIM PCC KLD NSS 

Average 0.677 0.714 0.780 0.222 0.195 0.218 1.116 
Multiplication 0.555 0.569 1.109 0.177 0.168 1.020 0.877 

Maximum 0.594 0.586 1.001 0.190 0.196 0.899 0.997 
SpP 0.667 0.698 0.898 0.236 0.210 0.205 1.118 

GNLNS [11] 0.703 0.757 0.809 0.221 0.259 0.688 1.299 
LMSWA 0.692 0.744 0.559 0.268 0.247 0.188 1.295 

SDW 0.657 0.691 0.786 0.224 0.199 0.193 0.995 
SVR 0.709 0.758 0.439 0.270 0.219 0.166 1.330 

Random Forest 0. 724 0. 780 0. 453 0. 297 0. 262 0. 129 1. 417

 
Fig. 6. Performance metrics when different number of features are used: AUC (a), sAUC (b), PCC (c), NSS (d), SIM (e), KLD (f), EMD (g). 
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generated model can be saved and applied on test datasets. As a 
result, times reported in this figure, include average time, for a 10 
second (30 fps) video in test database, that takes to generate 
features and fuse them to a saliency map (for all frames).  

 Note that the mathematical definition of the complexity of an 
algorithm involves calculating the number of operations (e.g. 
using big O notation). Due to the complex structure of most of the 
visual attention models, and lack of implementation details in 
some of the associated papers, it is not practical to calculate their 
mathematical complexity. The feasible solution to compare the 
complexity of different algorithms is therefore to compare their 
simulation times. The runtime measurements reported in Fig. 7 
provide a sense of computational complexity for each algorithm 
(but not the true algorithm complexity). That being said, for our 
runtime measurements we used a workstation with i7 CPU and 18 GBs of memory to perform complexity measurements. Note 
that it was ensured that no other background process was running during the measurement process. It is also worth noting that 
some of the algorithms have a parallel nature and thus can be boosted by efficient GPU implementations.   
 
4.6 Comparison with the state-of-the-art VAMs 
 
In this subsection, we provide a comparison between the performance of the proposed saliency prediction method and the state-
of-the-art visual attention models, which were originally proposed for saliency detection on 3D images and videos. In addition, 
four baseline models (representing trivial cases) are generated and added to the comparisons, a common practice in VAM 
performance evaluations.  

Baselines: The baselines are as follow: 
1) Chance: a map of random values in [0-1].  
2) Center: Center map is a Gaussian circular disk placed at the center of the image.  
3) One human: Human observers do not have the exact same opinion when watching a scene. Therefore, fixations are spread 

around the salient regions. Similar to the MIT saliency benchmark [65], we create a baseline of the fixation maps generated by 
only one human and compare this map with the average fixation map of the other observers. To this end, the fixation map of 
each participant is used as a saliency map and its performance in predicting the fixation maps of other participants is evaluated. 
This process is repeated for all the subjects and the average performances are used for the baseline. 

4) Infinite humans: we use the statistics of the 24 participants to find an estimate of a saliency map, which would have been 
produced by an infinite number of humans. Details regarding the baseline models can be found in [57].  

Blurring and center-bias: It is a common practice to add a center-bias and blur a saliency map before evaluating its 
performance using objective metrics [17,65]. We linearly add a center-bias and perform the blurring (using a Gaussian kernel) 
for our saliency maps as well as the other VAMs. Standard deviation of the center map and the Gaussian kernel and the weight 
for the center prior are assigned for each VAM separately, in a way that provides the maximum AUC with the training video set 
[57]. In addition, to ensure a fair comparison between different VAMs, we apply histogram matching to match the histogram of 
the saliency maps with their corresponding fixation maps [65]. 

Table 3. Performance Evaluation of Different VAMs Using Our Eye-Tracking Dataset of Stereoscopic Videos 
Model AUC sAUC EMD SIM PCC KLD NSS Simulation Time (sec) Average Rank* Type 

Infinite humans 0.9921 0.9908 0.03 0.9511 0.9968 0 4.2524  1  
LBVS-3D (proposed) 0.7243 0.7795 0.4528 0.2966 0.2620 0.1289 1.4167 73.39 2.33 3D video
LBVS-3D (static**) 0.6833 0.7091 0.5310 0.2544 0.2376 0.1963 1.1782 30.55 3.33 3D image

One human 0.7033 0.7379 0.8884 0.4651 0.4995 0.2232 2.1140  5.33  
Fang [17] 0.6655 0.6915 0.6676 0.2229 0.1987 0.2165 1.0380 3.25 5.33 3D image
Coria [67] 0.6584 0.6843 0.6568 0.2346 0.1417 0.2238 1.1361 3.03 8 3D video

Chamaret [27] 0.6669 0.6787 0.7568 0.2089 0.1568 0.2253 0.9056 64.62 8.33 3D video
Park [68] 0.6391 0.6346 0.8081 0.1841 0.1022 0.2198 0.7783 1.68 9 3D image

Ouerhani [28] 0.6224 0.6456 0.8768 0.1934 0.0967 0.2179 0.5459 7.21 9.33 3D image
Fan [69] 0.6349 0.6330 0.9014 0.1879 0.0856 0.2116 0.4185 128.98 9.33 3D image
Niu [19] 0.6078 0.6124 0.9339 0.1726 0.1208 0.2227 0.3334 165.82 9.67 3D image
Ju [70] 0.5811 0.5948 1.0330 0.1623 0.0827 0.2109 0.2778 2.05 10.67 3D image

Jiang [71] 0.6158 0.6089 0.9949 0.1934 0.1211 0.2326 0.3656 1.25 11.33 3D image
Center 0.5709 0.5999 0.6536 0.2128 0.1104 0.2445 0.6524 0.06 13  

Zhang [26] 0.5699 0.5754 1.0970 0.1528 0.0563 0.2293 0.2111 0.73 14.33 3D image
Chance 0.5 0.5 1.1140 0.1421 0 0.2393 0.0789 0.072 15.67  

     * Ranking is done using only sAUC, KLD, and NSS.          ** Motion features are excluded. 

 
Fig. 7. Complexity (execution time) when different number of features is
used. Note that the present implementation is serial however parallel
implementation is possible both in feature extraction and RF fusion. 
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The performance evaluations are provided in Table 3. In order to sort different models according to their performance, we 
assign a separate rank for each metric and use the average ranks. It was shown in [66] that most performance metrics are similar 
and that using sAUC, KLD, and one other metric among NSS, PLCC, SROCC, and SIM provides a fair comparison. To avoid 
the introduction of bias in the ranking, we use only sAUC, KLD, and NSS for ranking the performance of various VAMs. 

Fig. 8 demonstrates a visual comparison between various VAMs. For illustration purposes, we show a left view frame from 
one of the videos, associated depth map, ground truth from eye-tracking, as well as saliency maps produced out of different 
algorithms. Note that this figure only shows one sample frame for demonstration. 

To compare the performance of different algorithms, it is also essential to evaluate how these algorithms are statistically 
different. The metric evaluations values reported in Table 3 are average values over the entire database, however, we need to 
know the performance distribution across the individual videos. To this end, we compute the 95% confidence interval for each 
algorithm when performance is evaluated by comparing algorithm saliency maps and human fixations maps for individual 
videos. The confidence intervals (when sAUC, KLD, and NSS metrics are used for performance evaluations) are illustrated in 
Fig. 9. In addition, in case of interval overlaps, we measure the statistical difference between distributions of metric values over 
videos, by measuring P-values form Student T-test. Fig. 10 shows the P-values among different algorithms. The empty elements 
of Fig. 10 represent a zero P-value (i.e. two statistically different distributions). 

Comparing the result of Table 3 with those of the MIT saliency benchmark [65] and also [57] confirms that saliency prediction 
in 3D is a much more difficult task than 2D, as the models provide much higher performances for the 2D case [65],[57]. The 
same conclusion can be made by comparing the performance of one human in predicting the saliency of an infinite number of 
humans. The fact that one human is not a good representative for infinite number of humans (according to Table 3) is due to the 
complex structure of 3D perception and the additional saliency attributes introduced in 3D.  

It is worth noting that high level features (and all other features too) are combined based on their importance. The combining 
process (feature fusion) takes place inside the random forest module. If there are multiple high level features in a scene, some are 
likely to be looked at, and some are not. Based on the eye-tracking training data available to us from subjective experiments, we 
can learn how viewers preferred one high level object to the others. In fact, this is how feature importance values are calculated. 
For instance, according to Table 1, appearance of people in a scene is much more salient than appearance of vehicles. As a result 
the learnt model will assign higher saliency values to locations in a scene that people are present. In short, handling multiple high 
level features in a scene is based on the eye-tracking data that is learnt. This brings a limitation to this approach that there are 
only many scenarios that can be available as training data, so not every situation can be truly learnt. On the positive side 
however, due to flexibility of our approach, one can train a model with desired types of scenes, so that the method achieves 
higher accuracy on similar target videos. Moreover, flexibility of our approach allows one to add or remove any type of high or 
low level feature. The ones introduced in our implementation are just sample suggested features that showed potential in saliency 
prediction. 

Advantages of our saliency detection approach includes: having an acceptable accuracy, using both high and low level 
features, flexibility of the model to add or remove features, and often being reliable for different scene types (because it’s trained 
with various scene types). A disadvantages of our approach is that generation of all features can be time consuming (see Table 
3). Also, it might not be possible to extract high fidelity high-level features such as face or vehicles due to challenging scene 
contents. 

 
Fig. 8. A demonstration of saliency prediction of various stereoscopic VAMs 
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4.7 Comparison with the state-of-the-art VAMs – using another public dataset 
 

To ensure that the performance evaluations provided in Section 4 are not biased towards any particular type of video, we 
provide a second set of performance evaluations using another publicly available stereo video database. To this end, we utilize 
the database introduced in reference [59], which consists of eye-tracking data of 41 scenes, at 1920 × 1080 resolution, from 40 
subjects. Table 4 summarizes the performance of various VAMs when incorporated for saliency prediction on this database. The 
same metrics and ranking method as previous sub-sections is used. Despite some minor variations, results are in general in 
agreement with Table 3. 

 

Fig. 10. P-Values from student T test between each pair of VAMs: (top)
sAUC, (center) KLD, and (bottom) NSS 

 
Fig. 9. Performance of different VAMs with their 95% confidence intervals: 
(a) sAUC, (b) KLD, and (c) NSS 
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5 Conclusion 
 
This paper introduces a new computational visual attention model (VAM) for stereoscopic 3D video. Both low and high level 
features are incorporated in the design of our model. Several intuitive biological observations are quantified and adopted in our 
method. A random forest learning algorithm is utilized to train a saliency prediction model and efficiently fuse various feature 
maps generated by the proposed approach. Our method is flexible in that it allows new features to be added without changing the 
structure of the model. To verify the performance of the proposed VAM, we capture a dataset of stereoscopic videos and collect 
their eye-tracking results. Performance evaluations demonstrated the high performance of our visual attention model. 

Future works include the investigation of potential usage of saliency prediction to improve the performance of 3D video 
quality metrics [73-77], and similarly for HDR or 3D-HDR metrics [78-80]. 
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