Skip to main content
Log in

Smooth filtering identification based on convolutional neural networks

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The increasing prevalence of digital technology brings great convenience to human life, while also shows us the problems and challenges. Relying on easy-to-use image editing tools, some malicious manipulations, such as image forgery, have already threatened the authenticity of information, especially the electronic evidence in the crimes. As a result, digital forensics attracts more and more attention of researchers. Since some general post-operations, like widely used smooth filtering, can affect the reliability of forensic methods in various ways, it is also significant to detect them. Furthermore, the determination of detailed filtering parameters assists to recover the tampering history of an image. To deal with this problem, we propose a new approach based on convolutional neural networks (CNNs). Through adding a transform layer, obtained distinguishable frequency-domain features are put into a conventional CNN model, to identify the template parameters of various types of spatial smooth filtering operations, such as average, Gaussian and median filtering. Experimental results on a composite database show that putting the images directly into the conventional CNN model without transformation can not work well, and our method achieves better performance than some other applicable related methods, especially in the scenarios of small size and JPEG compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bahrami K, Kot AC (2015) Image splicing localization based on blur type inconsistency. IEEE Trans Inf Forensics Secur 10(5):999–1009

    Article  Google Scholar 

  2. Bas P, Filler T, Pevný T (2011) Break our steganographic system: The ins and outs of organizing BOSS. In: International Conference on Information Hiding, pp 59–70

  3. Cao G, Zhao Y, Ni R, Yu L, Tian H (2010) Forensic detection of median filtering in digital images. In: 2010 IEEE International Conference on Multimedia and expo (ICME), IEEE pp 89–94

  4. Chen C, Ni J, Huang J (2013) Blind detection of median filtering in digital images: A difference domain based approach . IEEE Trans Image Process 22:4699–4710

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen J, Kang X, Liu Y, Wang ZJ (2015) Median filtering forensics based on convolutional neural networks. IEEE Signal Process Lett 22:1849–1853

    Article  Google Scholar 

  6. Chen J, Song X, Nie L, Wang X, Zhang H, Chua TS (2016) Micro tells macro: Predicting the popularity of micro-videos via a transductive model. In: ACM Multimedia Conference, pp 898–907

  7. Christlein V, Riess C, Jordan J, Riess C, Angelopoulou E (2012) An evaluation of popular copy-move forgery detection approaches. IEEE Trans Inf Forensics Secur 7(6):1841–1854

    Article  Google Scholar 

  8. Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202

    Article  MATH  Google Scholar 

  9. Gloe T, Bohme R (2010) Dresden image database for benchmarking digital image forensics. In: Proceedings 2010 ACM symp. on appl. computing, Sierre, Switzerland, Mar. 22-26, pp 1584 –1590

  10. Glorot X, Bordes A, Bengio Y (2010) Deep sparse rectifier neural networks. J Mach Learn Res 15

  11. Gui X, Li X, Qi W, Yang B (2014) Blind median filtering detection based on histogram features. In: Asia-pacific signal and information processing Association, 2014 Annual Summit and Conference (APSIPA), IEEE, pp 1–4

  12. Heygster G (1982) Rank filters in digital image processing. Comput Graphics Image Process 19:148–164

    Article  Google Scholar 

  13. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160(1):106–154

    Article  Google Scholar 

  14. Justusson B (1981) Median filtering: Statistical properties. Springer

  15. Kang X, Stamm MC, Peng A, Liu KJR (2013) Robust median filtering forensics using an autoregressive model. IEEE Trans Inf Forensics Secur 8:1456–1468

    Article  Google Scholar 

  16. Karayev S, Trentacoste M, Han H, Agarwala A, Darrell T, Hertzmann A, Winnemoeller H (2013) Recognizing image style. Computer Science

  17. Kirchner M, Bohme R (2008) Hiding traces of resampling in digital images. IEEE Trans Inf Forensics Secur 3:582–592

    Article  Google Scholar 

  18. Kirchner M, Fridrich J (2010) On detection of median filtering in digital images. In: Proceedings of SPIE - The International Society for Optical Engineering 7541:1–12

  19. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst 25(2):2012

    Google Scholar 

  20. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  21. Liu X, Song M, Tao D, Liu Z, Zhang L, Chen C, Bu J (2013) Semi-supervised node splitting for random forest construction. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 492–499

  22. Liu Z, Chiew K, He Q, Huang H, Huang B (2014) Prior-free rare category detection: More effective and efficient solutions. Expert Syst Appl Inter J 41(17):7691–7706

    Article  Google Scholar 

  23. Liu Z, Chiew K, Zhang L, Zhang B, He Q, Zimmermann R (2016) Rare category exploration via wavelet analysis: Theory and applications. Expert Syst Appl 63:173–186

    Article  Google Scholar 

  24. Luo W, Huang J, Qiu G (2010) JPEG error analysis and its applications to digital image forensics . IEEE Trans Inf Forensics Secur 5:480–491

    Article  Google Scholar 

  25. Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines vinod nair. In: International Conference on Machine Learning, pp 807–814

  26. Salakhutdinov R, Hinton G (2009) Deep boltzmann machines. J Mach Learn Res 5(2):1967–2006

    MATH  Google Scholar 

  27. Schaefer G, Stich M (2003) UCID: an uncompressed color image database. In: Electronic Imaging 2004, International Society for Optics and Photonics, pp 472–480

  28. Scherer D, Müller A, Behnke S (2010) Evaluation of pooling operations in convolutional architectures for object recognition. In: Artificial Neural Networks - ICANN 2010 - International Conference, Thessaloniki, Greece, September 15-18, 2010, Proceedings, pp 92–101

  29. Song X, Ming ZY, Nie L, Zhao YL, Chua TS (2016) Volunteerism tendency prediction via harvesting multiple social networks. ACM Trans Inf Syst 34(2)

  30. Stamm MC, Liu K (2010) Forensic detection of image manipulation using statistical intrinsic fingerprints. IEEE Trans Inf Forensics Secur 5:492–506

    Article  Google Scholar 

  31. Stamm MC, Liu KJR (2011) Anti-forensics of digital image compression. IEEE Trans Inf Forensics Secur 6:1050–1065

    Article  Google Scholar 

  32. Velleman PF (1980) Definition and comparison of robust nonlinear data smoothing algorithms. J Am Stat Assoc 75:609–615

    Article  MathSciNet  MATH  Google Scholar 

  33. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA (2010) Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11(6):3371–3408

    MathSciNet  MATH  Google Scholar 

  34. Wang W, Yan Y, Zhang L, Hong R, Sebe N (2016) Collaborative sparse coding for multiview action recognition. IEEE Multimedia Magazine 23(4):80–87

    Article  Google Scholar 

  35. Yuan HD (2011) Blind forensics of median filtering in digital images. IEEE Trans Inf Forensics Secur 6:1335–1345

    Article  Google Scholar 

  36. Zhang L, Han Y, Yang Y, Song M, Yan S, Tian Q (2013a) Discovering discriminative graphlets for aerial image categories recognition. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society 22(12):5071–5084

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang L, Song M, Liu Z, Liu X, Bu J, Chen C (2013b) Probabilistic graphlet cut: Exploiting spatial structure cue for weakly supervised image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1908–1915

  38. Zhang L, Song M, Zhao Q, Liu X, Bu J, Chen C (2013c) Probabilistic graphlet transfer for photo cropping. IEEE Trans Image Process 22(2):802–15

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang L, Gao Y, Hong C, Feng Y, Zhu J, Cai D (2014a) Feature correlation hypergraph: exploiting high-order potentials for multimodal recognition. IEEE Trans Cybernetics 44(8):1408–1419

    Article  Google Scholar 

  40. Zhang L, Gao Y, Ji R, Xia Y, Dai Q, Li X (2014b) Actively learning human gaze shifting paths for semantics-aware photo cropping. IEEE Trans Image Process 23(5):2235–45

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang L, Gao Y, Xia Y, Lu K, Shen J, Ji R (2014c) Representative discovery of structure cues for weakly-supervised image segmentation. IEEE Trans Multimedia 16(2):470–479

    Article  Google Scholar 

  42. Zhang L, Yang Y, Gao Y, Yu Y, Wang C, Li X (2014d) A probabilistic associative model for segmenting weakly-supervised images. IEEE Trans Image Process 23(9):4150–4159

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang L, Hong R, Gao Y, Ji R, Dai Q, Li X (2015a) Image categorization by learning a propagated graphlet path. IEEE Transactions on Neural Networks and Learning Systems 27(3):674–685

    Article  MathSciNet  Google Scholar 

  44. Zhang L, Li X, Nie L, Yan Y, Zimmermann R (2015b) Semantic photo retargeting under noisy image labels. ACM Trans Multimed Comput Commun Appl 12 (3)

  45. Zhang L, Wang M, Hong R, Yin BC (2015c) Large-scale aerial image categorization using a multitask topological codebook. IEEE Trans Cybernetics 46(1)

  46. Zhang L, Li X, Nie L, Yang Y, Xia Y (2016a) Weakly supervised human fixations prediction. IEEE Trans Cybernetics 46(1):258–269

    Article  Google Scholar 

  47. Zhang L, Yang Y, Wang M, Hong R (2016b) Detecting densely distributed graph patterns for fine-grained image categorization. IEEE Trans Image Process 25 (2):553–565

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang N, Paluri M, Ranzato M, Darrell T, Bourdev L (2014e) PANDA: Pose aligned networks for deep attribute modeling. In: Computer Vision and Pattern Recognition, pp 1637–1644

  49. Zhang Y, Li S, Wang S, Shi YQ (2014f) Revealing the traces of median filtering using high-order local ternary patterns. IEEE Signal Process Lett 21:275–279

    Article  Google Scholar 

  50. Zhou B, Garcia AL, Xiao J, Torralba A, Oliva A (2014) Learning deep features for scene recognition using places database. Adv Neural Inf Proces Syst 1:487–495

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuting Su.

Additional information

This work was supported in part by the National Natural Science Foundation of China (61572356, 61472275, 61303208), the Tianjin Research Program of Application Foundation and Advanced Technology (15JCYBJC16200), a grant from the China Scholarship Council (201506255073), and a grant from the Elite Scholar Program of Tianjin University (2014XRG-0046).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Zhao, Z., Zhang, C. et al. Smooth filtering identification based on convolutional neural networks. Multimed Tools Appl 78, 26851–26865 (2019). https://doi.org/10.1007/s11042-016-4251-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4251-z

Keywords

Navigation