Skip to main content
Log in

Scalable coding of 3D holoscopic image by using a sparse interlaced view image set and disparity map

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

3D holoscopic imaging, also known as integral imaging, light field imaging or plenoptic imaging, can provide natural and fatigue-free 3D visualization. Holoscopic contents captured by the plenoptic camera contain both spatial and angular information of a 3D scene. Therefore, view images with different perspectives can be rendered from the holoscopic contents. A coding scheme to compress the 3D holoscopic image by exploiting the high spatial correlation among the rendered view images will be advantageous. Therefore, in this paper, an efficient scalable coding scheme is proposed to compress the 3D holoscopic image by utilizing such high spatial correlation. We firstly re-arrange the holoscopic contents to form an interlaced view image. A sparse format is then proposed to express the interlaced view image. With the reconstructed image derived by disparity map based sifting and interpolation, the full interlaced view image is coded by using the reconstructed image as a reference frame. As an outcome of the representation, a scalable structure with three layers can be provided by the proposed scheme. Experimental results demonstrate that the 3D holoscopic image can be compressed efficiently with over 44 percent bit rate reduction compared with HEVC. Meanwhile, the proposed scheme can also surpass several other prediction schemes in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Adedoyin S, Fernando W A C, Aggoun A, Kondoz K M (2007) Motion and disparity estimation with self adapted evolutionary strategy in 3D video coding. IEEE Trans Consum Electron 53(4):1768–1775

    Article  Google Scholar 

  2. Adelson E H, Bergen J R (1991) The plenoptic function and the elements of early vision, computational models of visual processing. MIT Press, Cambridge, pp 3–20

    Google Scholar 

  3. Aggoun A (2006) A 3D Dct compression algorithm for omnidirectional integral images. In: 2006 IEEE International conference on acoustics speech and signal processing proceedings, pp II-517-II-520

  4. Aggoun A (2011) Compression of 3D integral images using 3D wavelet transform. J Disp Technol 7(11):586–592

    Article  Google Scholar 

  5. Aggoun A, Tsekleves E, Swash M R, Zarpalas D, Dimou A, Daras P, Nunes P, Soares L D (2013) Immersive 3D holoscopic video system. IEEE MultiMedia 20(1):28–37

    Article  Google Scholar 

  6. Bossen F (2013) Common HM test conditions and soft-ware reference configurations. Document JCTVC-L1100

  7. Conti C, Soare L D, Nunes P (2012) Influence of self-similarity on 3D holoscopic video coding performance. In: Proceedings of the 18th Brazilian symposium on multimedia and the web, pp 131–134

  8. Conti C, Nunes P, Soares LD (2012) New HEVC prediction modes for 3D holoscopic video coding. In: 2012 19th IEEE International conference on image processing, pp 1325–1328

  9. Conti C, Nunes P, Soares L D (2013) Inter-layer prediction scheme for scalable 3-D holoscopic video coding. IEEE Signal Process Lett 20(8):819–822

    Article  Google Scholar 

  10. Conti C, Soares L D, Nunes P (2016) HEVC-based 3D holoscopic video coding using self-similarity compensated prediction. Signal Process Image Commun 42:59–78

    Article  Google Scholar 

  11. Dick J, Almeida H, Soares L D, Nunes P (2011) 3D Holoscopic video coding using MVC. In: 2011 IEEE International conference on computer as a tool (EUROCON), pp 1–4

  12. Elharar E, Stern A, Hadar O, Javidi B (2007) A hybrid compression method for integral images using discrete wavelet transform and discrete cosine transform. J Disp Technol 3(3):321–325

    Article  Google Scholar 

  13. Flynn D, Sole J, Suzuki T (2013) High efficiency video coding (HEVC) range extensions text specification: draft 4, joint collaborative team video coding (JCT-VC), document JCTVC-N1005

  14. Forman M C, Aggoun A (1997) Quantisation strategies for 3D-DCT-based compression of full parallax 3D images. In: Sixth International conference on image processing and its applications, pp 32–35

  15. Georgiev T (2013). Available: http://www.tgeorgiev.net/, Website [Online]

  16. Georgiev T, Lumsdaine A (2010) Focused plenoptic camera and rendering. J Electron Imag 19(2):021106

    Article  Google Scholar 

  17. Gortler S J, Grzeszczuk R, Szeliski R, Cohen M F (1996) The lumigraph. In: Proc. 23rd Annu. conf. comput. graph. interact. techn. (SIGGRAPH), pp 43–54

  18. HM-16.2+SCM-3.0 reference software, Developed by JCT-VC, Available: https://hevc.hhi.fraunhofer.de/

  19. Lambooij M T M, IJsselsteijn W A, Heynderickx I (2007) Visual discomfort in stereoscopic display: a review. In: Proc. SPIE IS and T electron. image., vol 6490

  20. Levoy M, Hanrahan P (1996) Light field rendering. In: Proc. 23rd Annu. conf. comput. graph. interact. techn., pp 31–42

  21. Li Y, Sjostrom M, Olsson R, Jennehag U (2014) Efficient intra prediction scheme for light field image compression. In: 2014 IEEE International conference on acoustics, speech and signal processing (ICASSP), pp 539–543

  22. Li Y, Sjostrom M, Olsson R, Jennehag U (2016) Coding of focused plenoptic contents by displacement intra prediction. IEEE Trans Circ Syst Vid Technol 26(7):1308–1319

    Article  Google Scholar 

  23. Li Y, Sjostrom M, Olsson R, Jennehag U (2016) Scalable coding of plenoptic images by using a sparse set and disparities. IEEE Trans Image Process 25(1):80–91

    Article  MathSciNet  Google Scholar 

  24. Liu D, An P, Ma R, Shen L (2015) Disparity compensation based 3D holoscopic image coding using HEVC, 2015. In: IEEE China summit & int. conf. signal and information processing (ChinaSIP), pp 201–205

  25. Liu D, An P, Ma R, Yang C, Shen L (2016) 3D holoscopic image coding scheme using HEVC with Gaussian process regression. Signal Process Image Commun 47:438–451

    Article  Google Scholar 

  26. Liu D, An P, Ma R, Yang C, Shen L, Li K (2016) Three-dimensional holoscopic image coding scheme using high-efficiency video coding with kernel-based minimum mean-square-error estimation. J Electron Imag 25(4):043015–1-043015-9

    Article  Google Scholar 

  27. Lucas L F R, Conti C, Nunes P, Soares L D, Rodrigues N M M, Pagliari C L, da Silva E A B, de Faria S M M (2014) Locally linear embedding-based prediction for 3D holoscopic image coding using HEVC. In: 2014 Proceedings of the 22nd European signal processing conference (EUSIPCO), pp 11,15,1–5

  28. Shi S, Gioia P, Madec G (2011) Efficient compression method for integral images using multi-view video coding. In: 2011 18th IEEE international conference on image processing, pp 137–140

  29. Sullivan G J, Ohm J, Han W-J, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circ Syst Video Technol 22 (12):1649–1668

    Article  Google Scholar 

  30. Tan T K, Boon C S, Suzuki Y (2006) Intra prediction by template matching. In: IEEE Int. conf. image processing (ICIP), pp 1693–1696

  31. Tiirkan M, Guillemot C (2012) Image prediction based on neighbor embedding methods. IEEE Trans Image Process 21(4):1885–1898

    Article  MathSciNet  MATH  Google Scholar 

  32. Wiegand T, Sullivan G J, Bjontegaard G, Luthra A (2003) Overview of the h. 264/avc video coding standard. IEEE Trans Circ Syst Video Technol 13(7):560–576

    Article  Google Scholar 

  33. Yeom S, Stern A, Javidi B (2004) Compression of 3D color integral images. Opt Express 12(8):1632–1642

    Article  Google Scholar 

  34. Yu H, Cohen R, Rapaka K, Xu J (2014) Common conditions for screen content coding tests. Document JCTVC-S1015

  35. Zaharia R, Aggoun A, McCormick M (2002) Adaptive 3D-DCT compression algorithm for continuous parallax 3D integral imaging. Signal Process Image Commun 17(3):231–242

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China, under Grants 61571285, U1301257, 61422111, and 61301112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., An, P., Ma, R. et al. Scalable coding of 3D holoscopic image by using a sparse interlaced view image set and disparity map. Multimed Tools Appl 77, 1261–1283 (2018). https://doi.org/10.1007/s11042-016-4293-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4293-2

Keywords

Navigation