Skip to main content
Log in

Video attention prediction using gaze saliency

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In recent years, the significant progress has been achieved in the field of visual saliency modeling. Our research key is in video saliency, which differs substantially from image saliency and could be better detected by adding the gaze information from the movement of eyes while people are looking at the video. In this paper we purposed a novel gaze saliency method to predict video attention, which is inspired by the widespread usage of mobile smart devices with camera. It is a non-contacted method to predict visual attention, and it does not bring the burden on the hardware. Our method first extracts the bottom-up saliency maps from the video frames, and then constructs the mapping from eye images obtained by the camera in synchronization with the video frames to the screen region. Finally the combination between top-down gaze information and bottom-up saliency maps is conducted by point-wise multiplication to predict the video attention. Furthermore, the proposed approach is validated on the two datasets: one is the public dataset MIT, the other is the dataset we collected, versus other four usual methods, and the experiment results show that our method achieves the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ali B, Laurent I (2013) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell 35(1):185–207

    Article  Google Scholar 

  2. Chen Y, Pan D, Pan Y, Liu S, Gu A, Wang M (2015) Indoor scene understanding via monocular rgb-d images. IInf Sci 320(C):361–371

    Article  MathSciNet  Google Scholar 

  3. Chen J, Song X, Nie L, Wang X, Zhang H, Chua T-S Micro tells macro: Predicting the popularity of micro-videos via a transductive model. In: Proceedings of the 2016 ACM on Multimedia Conference

  4. Cao X, Wei Y, Wen F, Sun J (2012) Face alignment by explicit shape regression. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp 2887–2894

  5. Fang Y, Lin W, Fang Z, Chen Z, Lin CW, Deng C (2015) Visual acuity inspired saliency detection by using sparse features. Inf Sci 309(C):1–10

    Article  Google Scholar 

  6. Girshick R, Iandola F, Darrell T, Malik J (2015) Deformable part models are convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 437–446

  7. Guo C, Ma Q, Zhang L (2008) Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In: CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, pp 1–8

  8. Hamel S, Guyader N, Pellerin D, Houzet D (2014) Contribution of Color Information in Visual Saliency Model for Videos. Springer International Publishing:213–221

  9. Hou X, Harel J, Koch C (2012) Image signature: Highlighting sparse salient regions. IEEE Trans Pattern Anal Mach Intell 34(1):194–201

    Article  Google Scholar 

  10. Han J, Li K, Shao L, Hu X, He S, Guo L, Han J, Liu T (2014) Video abstraction based on fmri-driven visual attention model. Inf Sci 281:781–796

    Article  Google Scholar 

  11. Hou X, Zhang L (2008) Dynamic visual attention: Searching for coding length increments. Adv Neural Inf Proces Syst 21:681–688

    Google Scholar 

  12. Itti L, Koch C (2001) Feature combination strategies for saliency-based visual attention systems. Redele Revista Electrónica De Didáctica Ele 10(1):161–169

    Google Scholar 

  13. Judd T, Ehinger K, Durand F, Torralba A (2009) Learning to predict where humans look:2106–2113

  14. Kanan C, Tong MH (2009) Sun: Top-down saliency using natural statistics. Vis Cogn 17(6):979–1003

    Article  Google Scholar 

  15. Koch C, Ullman S (1985) Shifts in selective visual attention: Towards the underlying neural circuitry. Hum Neurobiol 4(4):219–27

    Google Scholar 

  16. Kostinger M, Wohlhart P, Roth PM, Bischof H Annotated facial landmarks in the wild: A large-scale, real-world database for facial landmark localization. In: IEEE International Conference on Computer Vision Workshops, ICCV 2011 Workshops, Barcelona, Spain, November 6-13, 2011, pp 2144–2151

  17. Liang L, Xiao R, Wen F, Sun J (2008) Face alignment via component-based discriminative search. In: Computer Vision - ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, October 12-18 2008, Proceedings, Part II, pp 72–85

  18. Moran C, Paxon F, Christof K (2009) Faces and text attract gaze independent of the task: Experimental data and computer model. J Vis 9(12):74–76

    Google Scholar 

  19. Mital PK, Smith TJ, Hill RL, Henderson JM (2011) Clustering of gaze during dynamic scene viewing is predicted by motion. Cogn Comput 3(1):5–24

    Article  Google Scholar 

  20. Nie L, Wang M, Zha ZJ, Chua TS (2012) Oracle in image search: A content-based approach to performance prediction. ACM Trans Inf Syst 30(2):1–23

    Article  Google Scholar 

  21. Ni B, Xu M, Nguyen TV, Wang M, Lang C, Huang Z, Yan S (2014) Touch saliency: Characteristics and prediction. IEEE Trans Multimedia 16 (6):1779–1791

    Article  Google Scholar 

  22. Ohtsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  23. Peters JF, Wasilewski P (2012) Tolerance spaces: Origins, theoretical aspects and applications. Inf Sci 195(13):211–225

    Article  MathSciNet  MATH  Google Scholar 

  24. Ren S, Cao X, Wei Y, Sun J (2014) Face alignment at 3000 fps via regressing local binary features. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, pp 1685–1692

  25. Rekik W, Hégarat-Mascle SL, Reynaud R, Kallel A, Hamida AB (2015) Dynamic estimation of the discernment frame in belief function theory: Application to object detection. Inf Sci 306(2015):132–149

    Article  MATH  Google Scholar 

  26. Song M, Chen C, Wang S, Yang Y (2014) Low-level and high-level prior learning for visual saliency estimation. Inf Sci 281:573–585

    Article  Google Scholar 

  27. Saragih J (2011) Principal regression analysis. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp 2881–2888

  28. Shi Z (2012) A novel hybrid network video quality assessment method. Adv Inf Sci Serv Sci 4(20):188–197

    Google Scholar 

  29. Song X, Ming ZY, Nie L, Zhao YL, Chua TS Volunteerism tendency prediction via harvesting multiple social networks, Acm Transactions on Information Systems 34 (2)

  30. Stirk JA, Underwood G (2007) Low-level visual saliency does not predict change detection in natural scenes. J Vis 7(10):3.1–10

    Article  Google Scholar 

  31. Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12(12):97–136

    Article  Google Scholar 

  32. Tzimiropoulos G, Pantic M (2014) Gauss-newton deformable part models for face alignment in-the-wild. In: Computer Vision and Pattern Recognition, IEEE, pp 1851–1858

  33. Wu B, Xu L (2014) Integrating bottom-up and top-down visual stimulus for saliency detection in news video. Multimedia Tools and Applications 73(3):1053–1075

    Article  Google Scholar 

  34. Wang W, Yan Y, Zhang L, Hong R, Sebe N (2016) Collaborative sparse coding for multiview action recognition. IEEE Multimedia 23(4):80–87

    Article  Google Scholar 

  35. Xiong X, De la Torre F (2013) Supervised descent method and its applications to face alignment. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 532–539

  36. Xuemeng Song LZMAT-SC, Nie L (2015) Multiple social network learning and its application in volunteerism tendency prediction. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 213–222

  37. Yang Y, Wang X, Guan T, Shen J, Yu L (2014) A multi-dimensional image quality prediction model for user-generated images in social networks. Inf Sci 281:601–610

    Article  Google Scholar 

  38. Zhang L, Hong R, Gao Y, Ji R, Dai Q, Li X (2015) Image categorization by learning a propagated graphlet path. IEEE Transactions on Neural Networks and Learning Systems 27(3):674–685

    Article  MathSciNet  Google Scholar 

  39. Zhang L, Li X, Nie L, Yan Y, Zimmermann R Semantic photo retargeting under noisy image labels, Acm Transactions on Multimedia Computing Communications and Applications 12 (3)

  40. Zhang Y, Mao Z, Li J, Tian Q, Zhang Y, Mao Z, Li J, Tian Q (2014) Salient region detection for complex background images using integrated features. Inf Sci 281:586–600

    Article  Google Scholar 

  41. Zhang L, Song M, Li N, Bu J, Chen C (2009) Feature selection for fast speech emotion recognition. In: International Conference on Multimedia 2009, Vancouver, British Columbia, Canada, pp 753–756

  42. Zhang L, Song M, Zhao Q, Liu X, Bu J, Chen C (2013) Probabilistic graphlet transfer for photo cropping. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society 22(2):802–815

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang L, Wang M, Hong R, Yin B, Li X (2016) Large-scale aerial image categorization using a multitask topological codebook. IEEE Trans Cybernetics 46(2):535–545

    Article  Google Scholar 

  44. Zhang L, Xia Y, Ji R, Li X (2015) Spatial-aware object-level saliency prediction by learning graphlet hierarchies. IEEE Trans Ind Electron 62(2):1301–1308

    Article  Google Scholar 

  45. Zhang L, Yang Y, Wang M, Hong R (2016) Detecting densely distributed graph patterns for fine-grained image categorization. IEEE Trans Image Process 25 (2):553–565

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is partially supported by National Natural Science Foundation of China (61672201), Anhui Province Nature Science Foundation of China (1408085MKL76), Anhui Province Science and Technology Major Project of China (15czz02074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxiang Chen.

Additional information

The first two authors contribute equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Tao, G., Xie, Q. et al. Video attention prediction using gaze saliency. Multimed Tools Appl 78, 26867–26884 (2019). https://doi.org/10.1007/s11042-016-4294-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4294-1

Keywords

Navigation