Skip to main content
Log in

Efficient large payloads ternary matrix embedding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Matrix embedding (ME) can be exploited to improve the embedding efficiency for steganography by making fewer changes to the cover data. In ME, the sender and recipient agree on a parity check matrix (PCM) in advance. The PCM will be used by the sender to embed secret message into the cover data and later by the decoder to extract the embedded message. The embedding performance of ME is greatly influenced by the PCM thus the choice of PCM is crucial for ME. On the other hand, since larger sized PCM usually leads to higher embedding efficiency, how to keep the balance between the computational complexity and the embedding efficiency is also an important problem of ME. Based on these considerations, an efficient ternary ME method for large payloads data embedding is proposed in this paper. We utilize a specific matrix construction for PCM to improve embedding efficiency and a sub-optimal search strategy to reduce the computational complexity. The experimental results show that the proposed method achieves good embedding efficiency at low time cost and it outperforms some state-of-the-art works. For example, for a cover image with 512 × 512 pixels at an embedding rate of 1 bit per pixel, the proposed method can be implemented within 0.5 second in a personal computer with a rather high embedding efficiency as 3.89.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bierbrauer J, Fridrich J (2008) Constructing good covering codes for applications in steganography. In: Transactions on Data Hiding and Multimedia Security III, pp 1–22

  2. Chao R, Wu H, Lee C, Chu Y (2009) A novel image data hiding scheme with diamond encoding. EURASIP J Inf Secur 2009(1):1–9

    Google Scholar 

  3. Crandall R (1998) Some notes on steganography. Steganography mailing list. http://dde.binghamton.edu/download/Crandall_matrix.pdf

  4. Filler T, Judas J, Fridrich J (2011) Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans Inf Forensics Secur 6(3):920–935

    Article  Google Scholar 

  5. Fridrich J, Goljan M, Lisonek P, Soukal D (2005) Writing on wet paper. IEEE Trans Signal Process 53(10):3923–3935

    Article  MathSciNet  MATH  Google Scholar 

  6. Fridrich J, Goljan M, Soukal D (2006) Wet paper codes with improved embedding efficiency. IEEE Trans Inf Forensics Secur 1(1):102–110

    Article  Google Scholar 

  7. Fridrich J, Kodovský J (2012) Rich models for steganalysis of digital images. IEEE Trans Inf Forensics Secur 7(3):868–882

    Article  Google Scholar 

  8. Fridrich J, Lisoněk P, Soukal D (2006) On steganographic embedding efficiency. In: Proceedings of the 8th international workshop on information hiding, pp 282–296

  9. Fridrich J, Soukal D (2006) Matrix embedding for large payloads. IEEE Trans Inf Forensics Secur 1(3):390–395

    Article  Google Scholar 

  10. Gao Y, Li X, Yang B (2009) Employing optimal matrix for efficient matrix embedding. In: Proceedings of the fifth international conference on intelligent information hiding and multimedia signal processing, pp 161–165

  11. Gao Y, Li X, Zeng T, Yang B (2009) Improving embedding efficiency via matrix embedding: a case study . In: Proceedings of the IEEE international conference on image processing, pp 109–112

  12. Holub V, Fridrich J (2013) Digital image steganography using universal distortion. In: Proceedings of the ACM information hiding and multimedia security workshop, pp 59–68

  13. Hong W, Chen T (2012) A novel data embedding method using adaptive pixel pair matching. IEEE Trans Inf Forensics Secur 7(1):176–184

    Article  Google Scholar 

  14. Iranpour M, Safabakhsh R (2015) Reducing the embedding impact in steganography using hamiltonian paths and writing on wet paper. Multimedia Tools and Applications 74(17):6657–6670

    Article  Google Scholar 

  15. Kuo W, Lai P, Wang C, Wuu L (2015) A formula diamond encoding data hiding scheme. Journal of Information Hiding and Multimedia Signal Processing 6(6):1167–1176

    Google Scholar 

  16. Kuo W, Wang C, Hou H (2016) Signed digit data hiding scheme. Inf Process Lett 116(2):183–191

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuo W, Wang C, Huang Y (2015) Binary power data hiding scheme. AEU Int J Electron Commun 69(11):1574–1581

    Article  Google Scholar 

  18. Li B, Wang M, Li X, Tan S, Huang J (2015) A strategy of clustering modification directions in spatial image steganography. IEEE Trans Inf Forensics Secur 10(9):1905–1917

    Article  Google Scholar 

  19. Li J, Yang X, Liao X, Pan F, Zhang M (2016) A game-theoretic method for designing distortion function in spatial steganography. Multimedia Tools and Applications:1–15

  20. Li X, Cai S, Zhang W, Yang B (2015) A further study of large payloads matrix embedding. Inf Sci 324:257–269

    Article  Google Scholar 

  21. Li X, Li B, Luo X, Yang B, Zhu R (2013) Steganalysis of a PVD-based content adaptive image steganography. Signal Process 93(9):2529–2538

    Article  Google Scholar 

  22. Li X, Yang B, Cheng D, Zeng T (2009) A generalization of LSB matching. IEEE Signal Process Lett 16(2):69–72

    Article  Google Scholar 

  23. Luo W, Huang F, Huang J (2010) Edge adaptive image steganography based on LSB matching revisited. IEEE Trans Inf Forensics Secur 5(2):201–214

    Article  Google Scholar 

  24. Mielikainen J (2006) LSB Matching revisited. IEEE Signal Process Lett 13 (5):285–287

    Article  Google Scholar 

  25. Pevný T, Bas P, Fridrich J (2010) Steganalysis by subtractive pixel adjacency matrix. IEEE Trans Inf Forensics Secur 5(2):215–224

    Article  Google Scholar 

  26. Pevný T, Filler T, Bas P (2010) Using high-dimensional image models to perform highly undetectable steganography. In: Proceedings of the 12th information hiding, pp 161–177

  27. van Dijk M, Willems F (2001) Embedding information in grayscale images. In: Proceedings of the 22nd symposium on information and communication theory in the benelux, pp 147–154

  28. Wang C, Zhang W, Liu J, Yu N (2012) Fast matrix embedding by matrix extending. IEEE Trans Inf Forensics Secur 7(1):346–350

    Article  Google Scholar 

  29. Wu D, Tsai W (2003) A steganographic method for images by pixel-value differencing. Pattern Recogn Lett 24(9-10):1613–1626

    Article  MATH  Google Scholar 

  30. Xia Z, Wang X, Sun X, Liu Q, Xiong N (2016) Steganalysis of LSB matching using differences between nonadjacent pixels. Multimedia Tools and Applications 75 (4):1947–1962

    Article  Google Scholar 

  31. Yang C, Weng C, Wang S, Sun H (2008) Adaptive data hiding in edge areas of images with spatial LSB domain systems. IEEE Trans Inf Forensics Secur 3(3):488–497

    Article  Google Scholar 

  32. Zhang X, Wang S (2006) Efficient steganographic embedding by exploiting modification direction. IEEE Commun Lett 10(11):781–783

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China (Nos. 61572052, U1636206 and 61272421), the PAPD fund, and the CICAEET fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongming Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Li, X., Wang, J. et al. Efficient large payloads ternary matrix embedding. Multimed Tools Appl 77, 1605–1622 (2018). https://doi.org/10.1007/s11042-016-4301-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4301-6

Keywords

Navigation