Skip to main content
Log in

On the comparison of different kernel functionals and neighborhood geometry for nonlocal means filtering

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The present work proposes a review and comparison of different Kernel functionals and neighborhood geometry for Nonlocal Means (NLM) in the task of digital image filtering. Some different alternatives to change the classical exponential kernel function used in NLM methods are explored. Moreover, some approaches that change the geometry of the neighborhood and use dimensionality reduction of the neighborhood or patches onto principal component analysis (PCA) are also analyzed, and their performance is compared with respect to the classic NLM method. Mainly, six approaches were compared using quantitative and qualitative evaluations, to do this an homogeneous framework has been established using the same simulation platform, the same computer, and same conditions for the initializing parameters. According to the obtained comparison, one can say that the NLM filtering could be improved when changing the kernel, particularly for the case of the Tukey kernel. On the other hand, the excellent performance given by recent hybrid approaches such as NLM SAP, NLM PCA (PH), and the BM3D SAPCA lead to establish that significantly improvements to the classic NLM could be obtained. Particularly, the BM3D SAPCA approach gives the best denoising results, however, the computation times were the longest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Berlinet A, Devroye L (1994) A comparison of kernel density estimates. Publications de l’Intitut de Statistique de l’Université, de Paris 38(3):3–59

    MathSciNet  MATH  Google Scholar 

  2. Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol 2, San Diego, USA, pp 60–65

  3. Buades A, Coll B, Morel JM (2010) Image denoising methods. A new Nonlocal principle. SIAM Rev 52(1):113–147

    Article  MathSciNet  MATH  Google Scholar 

  4. Buades A, Coll B, Morel JM (2008) Nonlocal image and movie denoising. Int J Comput Vision 76(2):123–139

    Article  Google Scholar 

  5. Buades A, Coll B, Morel JM (2011) Self-similarity-based image denoising. Commun ACM 54(5):109–117

    Article  Google Scholar 

  6. Colom M, Buades A, Morel J-M (2014) Nonparametric noise estimation method for raw images. J Opt Soc Am A 31(4):863–871

    Article  Google Scholar 

  7. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D Transform-Domain collaborative filtering. IEEE Trans on Image Processing 16(8):2080–2095

    Article  MathSciNet  Google Scholar 

  8. Dabov K, Foi A, Katkovnik V, Egiazarian K (2009) BM3D Image denoising with Shape-Adaptive Principal Componet Analysis. In: Proceedings of the Workshop on Signal Processing with Adaptive Sparse Structured Rep. (SPARS’09), Saint-Malo, France

  9. Danielyan A, Foi A (2009) Noise variance estimation in nonlocal tranform domain. In: Proceedings of the International Workshop on Local and Non-Local Approx. in Image Proc. (NLNA2009), Tuusula, Finland, pp 41–45

  10. De la Rosa JI, Fleury G (2002) On the Kernel selection for Minimum-Entropy estimation. In: Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Anchorage, AK (USA), pp 1205–1210

  11. De la Rosa JI, Fleury G, Davoust M-E (2003) Minimum-entropy, pdf approximation and Kernel selection for measurement estimation. IEEE Trans Instrum Meas 52(4):1009–1020

    Article  Google Scholar 

  12. De la Rosa JI, Villa JJ, De la Rosa E, González E, Gutíerrez O, Escalante N, Ivanov R, Fleury G (2013) MAP Entropy estimation: Applications in robust image filtering. Journal of the European Optical Society-Rapid Publication 8:13047

    Article  Google Scholar 

  13. Deledalle C-A, Denis L, Tupin F (2009) Iterative weighted Maximum Likelihood denoising with probabilistic patch-based weights. IEEE Trans on Image Processing 18 (12):2661–2672

    Article  MathSciNet  MATH  Google Scholar 

  14. Deledalle C-A, Duval V, Salmon J (2012) Non-local Methods with Shape-Adaptive Patches (NLM-SAP). J Math Imaging Vision 43(2):103–120

    Article  MathSciNet  MATH  Google Scholar 

  15. Deledalle C-A, Salmon J, Dalalyan AS (2011) Image denoising with patch based PCA: Local versus global. In: Proceedings of the British Machine Vision Conference (BMVC). University of Dundee

  16. Devroye L (1992) A note on the usefulness of superkernels in density estimation. Ann Stat 20:2037–2056

    Article  MathSciNet  MATH  Google Scholar 

  17. Devroye L (1989) The double kernel method in density estimation. Ann Inst Henri Poincare 25:533– 580

    MathSciNet  MATH  Google Scholar 

  18. Devroye L (1997) Universal smoothing factor selection in density estimation: theory and practice. Test 6:223–320

    Article  MathSciNet  MATH  Google Scholar 

  19. Devroye L, Krzyzȧk A (1999) On the Hilbert kernel density estimate. Statistics and Probability Letters 44:299–308

    Article  MathSciNet  MATH  Google Scholar 

  20. Dinesh PJ, Govindan VK, Abraham TM (2009) Robust estimation approach for nonlocal-means denoising based on structurally similar patches. International Journal of Open Problems in Computer Science and Mathematics 2:293–310

    Google Scholar 

  21. Escalante N, Villa J, De la Rosa I, De la Rosa E, González-Ramírez E, Gutiérrez O, Olvera C, Araiza M (2013) 2-D Continuous Wavelet transform for ESPI phase-maps denoising. Opt Lasers Eng 51(9):1060–1065

    Article  Google Scholar 

  22. Goossens B, Luong H, Pizurica A, Philips W (2008) An improved non-local denoising algorithm. In: Proceedings of International Workshop on Local and Non-Local Approximation in Image Processing (NLNA2008), Lausanne, Switzerland, pp 143–156

  23. http://www.cs.tut.fi/~foi/GFC-BM3D/

  24. http://www.math.u-bordeaux1.fr/~cdeledal/

  25. http://www.mathworks.com/matlabcentral/fileexchange/13176-non-local-means-filter

  26. Juditsky A, Nemirovsky A (2010) Nonparemetric denoising signals of unknown local structure, II: Nonparametric function recovery. Appl Comput Harmon Anal 29:354–367

    Article  MathSciNet  MATH  Google Scholar 

  27. Lebrun M, Buades A, Morel J-M (2013) Implemantation of the Non-local Bayes (NL-bayes) image denoising algorithm. Image Processing On Line (IPOL):1–42

  28. Lin L, Lingfu K (2009) Image denoising base on Non-local means with Wiener filtering in wavelet domain. In: Proceedings of the Fifth IEEE International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp 471–474

  29. Liu YL, Wang J, Chen X, Guo Y-W, Peng Q-S (2008) A robust and fast non-local means algorithm for image denoising. J Comput Sci Technol 23(2):270–279

    Article  MathSciNet  Google Scholar 

  30. Loader CM (1999) Bandwidth selection: classical or plug-in? Ann Stat 27 (3):415–438

    Article  MathSciNet  MATH  Google Scholar 

  31. Maleki A, Narayan M, Baraniuk RG (2013) Anisotropic nonlocal means denoising. Appl Comput Harmon Anal 35:452–482

    Article  MathSciNet  MATH  Google Scholar 

  32. Masry E (1983) Probability density estimation from sampled data. IEEE Trans Inf Theory 29(5):697– 709

    Article  MathSciNet  MATH  Google Scholar 

  33. Milanfar P (2013) A tour of modern image filtering. IEEE Signal Process Mag 30(1):106–128

    Article  Google Scholar 

  34. Ponomarenko NN, Lukin VV, Zriakhov MS, Kaarna A, Astola J (2007) An automatic approach to lossy compression of AVIRIS images. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium-IGARSS, pp 472–475

  35. Pyatykh S, Hesser J, Zheng L (2013) Image noise level estimation by principal component analysis. IEEE Trans on Image Processing 22(2):687–699

    Article  MathSciNet  MATH  Google Scholar 

  36. Sutour C, Aujol J-F, Deledalle C-A (2016) Automatic estimation of the noise level function for adaptive blind denoising. In: Proceedings of the 24th IEEE European Signal Processing Conference (EUSIPCO), pp 76–80

  37. Sutour C, Deledalle CA, Aujol JF (2014) Adaptive regularization of the NL-means: Application to image and video denoising. IEEE Trans on Image Processing 23(8):3506–3521

    Article  MathSciNet  MATH  Google Scholar 

  38. Takeda H, Farsiu S, Milanfar P (2007) Kernel regression for image processing and reconstruction. IEEE Trans on Image Processing 16(2):349–366

    Article  MathSciNet  Google Scholar 

  39. Talebi H, Zhu X, Milanfar P (2013) How to SIAF-ly boost denoising performance. IEEE Trans on Image Processing 22(4):1470–1485

    Article  MathSciNet  MATH  Google Scholar 

  40. Terrell GP (1990) The maximal smoothing principle in density estimation. J Am Stat Assoc 85:470–477

    Article  MathSciNet  Google Scholar 

  41. Terrell GP, Scott DW (1985) Oversmoothed nonparametric density estimation. J Am Stat Assoc 80:209–214

    Article  Google Scholar 

  42. Tian J, Yu W-Y, Xie S-L (2008) On the kernel function selection of nonlocal filtering for image denoising. In: Proceedings of the IEEE Seventh International Conference on Machine Learning and Cybernetics, pp 2964–2969

  43. Van De Ville D, Kocher M (2009) SURE-Based non-Local means. IEEE Signal Process Lett 16(11):973–976

  44. Van De Ville D, Kocher M (2011) Non-local means with dimensionality reduction and SURE-based parameter selection. IEEE Trans on Image Processing 20(9):2683–2690

  45. You SJ, Cho NI (2011) A new image denoising method based on the wavelet domain Nonlocal means filtering. In: Proceedings of the ICASSP, vol 2011, pp 1141–1144

  46. You SJ, Cho NI (2013) An adaptive bandwidth nonlocal means image denoising in wavelet domain. EURASIP Journal on Image and Video Processing 60:1–22

    Google Scholar 

Download references

Acknowledgments

The first author acknowledge all support given by the Universidad Autónoma de Zacatecas (UAZ) during the years 2014-2015 to realize one academic year (invited professor-researcher) of leave at the Instituto Tecnológico de Sonora (ITSON). Additional acknowledgements for the support given by CONACyT, particularly the postgraduate programs in Electrical Engineering Sciences of both institutions (UAZ and ITSON). Also, our deep gratitude to the Secretaría de Educación Pública (SEP) of Mexico, this work was partially supported through the PIFI 2014-2015 Mexican Program from UAZ. Finally, we acknowledge the valuable comments and recommendations made by two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José I. de la Rosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Rosa, J.I., Villa-Hernández, J., Cortez, J. et al. On the comparison of different kernel functionals and neighborhood geometry for nonlocal means filtering. Multimed Tools Appl 77, 1205–1235 (2018). https://doi.org/10.1007/s11042-016-4322-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4322-1

Keywords

Navigation