Skip to main content
Log in

Pupil localization in image data acquired with near-infrared or visible wavelength illumination

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Pupil localization in human face/eye images has numerous applications, e.g., eye tracking, iris recognition, cataract assessment and surgery, diabetic retinopathy screening, neuropsychiatric disorders diagnosing, and aliveness detection. In real scenario, the pupil localization task suffers from many complications such as pupil’s constriction and dilation moments, light reflections, eyelids and eyelashes, and cataract disease. To resolve this issue, this study proposes an accurate and fast pupil localization scheme. It performs relatively well for eyeimages acquired either with the near infrared (NIR) or visible wavelength (VW) illumination. First, it effectively preprocesses the input eyeimage. Next, it coarsely marks pupil location using a scheme comprising an adaptive threshold and two-dimensional (2D) object properties. Then, it validates pupil location via an effective test involving global gray-level statistics. If it finds pupil location invalid, then it localizes pupil through a hybrid of the Hough transform and image global gray-level statistics. Finally, it localizes the fine pupillary boundary through a hybrid of the Fourier series and image’s gradients. Its experimental results obtained on numerous publically available iris datasets demonstrate its superiority over most of the contemporary schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abdullah MAM, Dlay SS, Woo WL (2014) Fast and accurate pupil isolation based on morphology and active contour. Int J Inf Electron Eng 4(6):418–422

    Google Scholar 

  2. Aydi W, Masmoudi N, Kamoun L (2012) Active contour without edges vs GVF active contour for accurate pupil segmentation. Int J Comput Appl 54(4):25–36

    Google Scholar 

  3. Azeem A, Sharif M, Raza M, Murtaza M (2014) A survey: face recognition techniques under partial occlusion. Int Arab J Inf Technol 11(1):1–10

    Google Scholar 

  4. Basit A, Javed MY, Masood S. Non-circular pupil localization in iris images. In: Proc 4th Int Conf Emerging Technol (ICET 2008); Rawalpindi, Pakistan; 18–19 Oct. 2008: p. 228–231; doi: 10.1109/ICET.2008.4777505

  5. Bowyer KW, Hollingsworth K, Flynn PJ (2008) Image understanding for iris biometrics: A survey. Comp Vision Image Underst (CVIU) 110(2):281–307

    Article  Google Scholar 

  6. CASIA iris databases; http://biometrics.idealtest.org/dbDetailForUser.do?id=4. Accessed 24 Dec 2016

  7. Daugman J (2007) New methods in iris recognition. IEEE Trans Syst Man Cybern Part-B 37(5):1167–1175

    Article  Google Scholar 

  8. GokayA EP, Orhan MK (2013) A video-based eye pupil detection system for diagnosing bipolar disorder. Turkish J Electr Eng Comput Sci 21:2367–2377

    Article  Google Scholar 

  9. Gonzalez RC, Woods RE (2001) Digital Image Processing, 2nd edn. Upper Saddle River, Prentice Hall

    Google Scholar 

  10. Google webiste; https://www.google.com.pk/. Accessed 24 Dec 2016

  11. IITD iris databases; http://www.iitd.ac.in/. Accessed 24 Dec 2016

  12. Jan F (2017) Segmentation and localization schemes for non-ideal iris biometric systems. Signal Process 133:192–212

    Article  Google Scholar 

  13. Jan F, Imran U, Khan SA, Malik SA (2014) A dynamic non-circular iris localization technique for non-ideal data. Comput Electr Eng 40(8):215–226

    Article  Google Scholar 

  14. Jan F, Usman I, Agha S (2012) Iris localization in frontal eye images for less constrained iris recognition systems. Digital Signal Process 22(6):971–986

    Article  MathSciNet  Google Scholar 

  15. Jarjes AA, Kuanquan W, Mohammed GJ. Iris localization: Detecting accurate pupil contour and localizing limbus boundary. In: Proc 2nd Int Asia Conf Informatics Control, Automation and Robotics (CAR); Wuhan; 6–7 March 2010: p. 349–352. doi: 10.1109/CAR.2010.5456828

  16. Javadi AH, Hakimi Z, Barati M, Walsh V, Tcheang L (2015) SET: a pupil detection method using sinusoidal approximation. Front Neuroeng 8(4):1–15

    Google Scholar 

  17. Krishnamoorthy R, Indradevi D (2013) A new snake model for pupil localization using orthogonal polynomials transform. Int J Comput Theory Eng 5(1):36–40

    Article  Google Scholar 

  18. Laddi A, Prakash NR (2016) An augmented image gradients based supervised regression technique for iris center localization. Mult Tools Applic 1–11. doi: 10.1007/s11042-016-3361-y

  19. Lee GJ, Jang SW, Kim GY (2014) Pupil center detection using edge and circle characteristics. Adv Sci Technol Lett 49:53–58

    Google Scholar 

  20. Leo M, Cazzato D, Marco TD, Distante C (2013) Unsupervised approach for the accurate localization of the pupils in near-frontal facial images. J Electron Imaging 22(3):033033-1–033033-10

    Article  Google Scholar 

  21. Li P, Liu X (2008)An incremental method for accurate iris segmentation. in: Proc 19th Int Conf Pattern Recogn (ICPR 2008); Tampa, FL; 8–11 Dec. 2008; pp.1:4. doi:10.1109/ICPR.2008.4761429

  22. Lin TC, Huang HC, Liao BY, Pan JS (2007) An optimized approach on applying genetic algorithm to adaptive cluster validity index. Int J Comput Sci Eng Syst 1(4):253–257

    MATH  Google Scholar 

  23. Lin YT, Lin RY, Lin YC, Lee GC (2012) Real-time eye-gaze estimation using a low-resolution webcam. Multimed Tools Appl 65(3):543–568

    Article  Google Scholar 

  24. Lin Z, Yu H (2011) The pupil location based on the OTSU method and hough transform. Procedia Environ Sci 8:352–356

    Article  Google Scholar 

  25. Marciniak T, Dąbrowski A, Chmielewska A, Krzykowska AA (2014) Selection of parameters in iris recognition system. Multimed Tools Appl 68(1):193–208

    Article  Google Scholar 

  26. Markus N, Miroslav F, Pandzic IS, Ahlberg J, Forchheimer R (2014) Eye pupil localization with an ensemble of randomized trees. Pattern Recogn 47(2):578–587

    Article  Google Scholar 

  27. Masek L (2003) Recognition of human iris patterns for biometric identification. BSc-Thesis: School of Computer Science and Software Engineering; The University of Western Australia

  28. MMU iris databases; http://pesona.mmu.edu.my/~ccteo/. Accessed 24 Dec 2016

  29. Mohammed GJ, Hong BR, Jarjes AA (2010) Accurate pupil features extraction based on new projection functions. Comput Inform 29(4):663–680

    MATH  Google Scholar 

  30. Morimoto CH, Koons D, Amir A, Flickner M (2000) Pupil detection and tracking using multiple light sources. Image Vis Comput 18(4):331–335

    Article  Google Scholar 

  31. Morimoto CH, Santos TT, Muniz AS (2005) Automatic Iris Segmentation Using Active Near Infra Red Lighting. In: Computer Graphics Image Processing SIBGRAPI 2005. 18th Brazilian Symposium on. 2005

  32. Perumal RS, Mouli PVSSRC (2011) Pupil segmentation from IRIS images using modified peak detection algorithm. Int J Comput Appl 31(7):51–56

    Google Scholar 

  33. Puhan NB, Sudha N, Anirudh SK (2011) Efficient segmentation technique for noisy frontal view iris images using Fourier spectral density. Signal Image Video Process 5(1):105–119

    Article  Google Scholar 

  34. Radman A, Jumari K, Zainal N (2013) Fast and reliable iris segmentation algorithm. IET Image Process 7(1):42–49

    Article  Google Scholar 

  35. Roig AB, Marta M, Julian E, Jorge P, David M, Carlos I (2012) Pupil detection and tracking for analysis of fixational eye micromovements. Optik – Int J Light Electron Opt 123(1):11–15

    Article  Google Scholar 

  36. Saad IA, George LE, Tayyar AA (2014) Accurate and fast pupil localization using contrast stretching, seed filling and circular geometrical constraints. J Comput Sci 10(2):305–315

    Article  Google Scholar 

  37. Skodras E, Kanas VG, Fakotakis N (2015) On visual gaze tracking based on a single low cost camera. Signal Process Image Commun 36:29–42

    Article  Google Scholar 

  38. Talmi K, Liu J (1999) Eye and gaze tracking for visually controlled interactive stereoscopic displays. Signal Process Image Commun 14(10):799–810

    Article  Google Scholar 

  39. Teo C, Neo H, Michael G, Tee C, Sim K (2010) A robust iris segmentation with fuzzy supports. In: Neural Information Processing. Theory and Algorithms, K. Wong, B. Mendis, and A. Bouzerdoum, Editors. Springer Berlin / Heidelberg, p. 532–539

  40. UBIRIS iris databases; http://iris.di.ubi.pt/. Accessed 24 Dec 2016

  41. UPOL iris database; http://www.cbsr.ia.ac.cn:8080/iapr_database.jsp. Accessed 24 Dec 2016

  42. Wang QZ, Kang WJ, Wang YJ (2016) Support tensor machine image classification algorithm based on tensor principal component analysis. J Inf Hiding Multimed Signal Process 7(6):1265–1273

    Google Scholar 

  43. Wang J, Zhang G, Shi J (2015) Pupil and glint detection using wearable camera sensor and near-infrared LED array. Sensors 15(12):30126–30141

    Article  Google Scholar 

  44. Wikipediacwebsite; http://en.wikipedia.org/wiki/Main_Page. Accessed 24 Dec 2016

  45. Wildes RP (1997) Iris recognition: an emerging biometric technology. Proc IEEE 85(9):1348–1363

    Article  Google Scholar 

  46. Yadav MR, Shivdas SS (2014) Novel method to localize the pupil in eye gaze tracking systems. Int J Emerging Technol Computational Applied Sci 14:52–57

    Google Scholar 

  47. Yuasa M, Yamaguchi O, Fukui K (2004) Precise pupil contour detection based on minimizing the energy of pattern and edge. IEICE Trans Inf Syst 87(1):105–112

    Google Scholar 

  48. Zhu D, Moore ST, Raphan T (1999) Robust pupil center detection using a curvature algorithm. Comput Methods Prog Biomed 59(3):145–157

    Article  Google Scholar 

Download references

Acknowledgements

Author is thankful to the University of Beira Interior (UBI); the Malaysia Multimedia University (MMU); the Indian Institute of Technology Delhi (IITD); and the Chinese Academy of Sciences’ Institute of Automation (CASIA); for providing free access to their developed iris datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farmanullah Jan.

Ethics declarations

Funding

This study received no funding.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, F. Pupil localization in image data acquired with near-infrared or visible wavelength illumination. Multimed Tools Appl 77, 1041–1067 (2018). https://doi.org/10.1007/s11042-016-4334-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4334-x

Keywords

Navigation