Skip to main content
Log in

A ROI-based high capacity reversible data hiding scheme with contrast enhancement for medical images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we attempt to investigate the secure archiving of medical images which are stored on semi-trusted cloud servers, and focus on addressing the complicated and challenging integrity control and privacy preservation issues. With the intention of protecting the medical images stored on a semi-trusted server, a novel ROI-based high capacity reversible data hiding (RDH) scheme with contrast enhancement is proposed in this paper. The proposed method aims at improving the quality of the medical images effectively and embedding high capacity data reversibly meanwhile. Therefore, the proposed method adopts “adaptive threshold detector” (ATD) segmentation algorithm to automatically separate the “region of interest” (ROI) and “region of non-interest” (NROI) at first, then enhances the contrast of the ROI region by stretching the grayscale and embeds the data into peak bins of the stretched histogram without extending the histogram bins. Lastly, the rest of the required large of data are embedded into NROI region regardless its quality. In addition, the proposed method records the edge location of the segmentation instead of recording the location of the overflow and underflow. The experiment shows that the proposed method can improve the quality of medical images obviously whatever in low embedding rate or high embedding rate when compared with other contrast-based RDH methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Al-Qershi OM, Khoo BE (2011) High capacity data hiding schemes for medical images based on difference expansion. J Syst Softw 84(1):105–112

    Article  Google Scholar 

  2. Bao F, Deng RH, Ooi BC et al (2005) Tailored Reversible Watermarking Schemes for Authentication of Electronic Clinical Atlas. IEEE Trans Inf Technol Biomed 9(4):554–563

    Article  Google Scholar 

  3. B.ou XL, Zhao Y, Ni R, Shi Y (2013) Pairwise Prediction-Error Expansion for Efficient Reversible Data Hiding. IEEE Trans Image Process 22(12):5010–5012

    Article  MathSciNet  MATH  Google Scholar 

  4. Dragoi I-C, Coltuc D (2014) Local-prediction-based difference expansion reversible watermarking. IEEE Trans Image Process 23(4):1779–1790

    Article  MathSciNet  MATH  Google Scholar 

  5. Fang YM, Ma K, Wang Z et al (2015) No-Reference Quality Assessment of Contrast-Distorted Images Based on Natural Scene Statistics. IEEE Signal Process Lett 22(7):838–842

    Google Scholar 

  6. Gao M, Wang L (2013) Comprehensive evaluation for HE based contrast enhancement. Adv Intell Syst Applicat 2:331–338

    Google Scholar 

  7. Gao G-Y, Shi Y-Q (2015) Reversible Data Hiding Using Controlled Contrast Enhancement and Integer Wavelet Transform. IEEE Signal Process Lett 22 (11):2078–2082

    Article  Google Scholar 

  8. Gonzalez RC, Woods RE (2004) Digital Image Processing (Second Edition), Publishing House of Electronics Industry, pp 71

  9. Hiary S, Jafar I, Hiary H (2016) An efficient multi-predictor reversible data hiding algorithm based on performance evaluation of different prediction schemes. Multimedia Tools Application, pp 1–27

  10. Howard PG, Kossentini F, Martins B, Forchhammer S, Rucklidge WJ (1998) The emerging JBIG2 standard. IEEE Trans Circuits Syst Video Technol 8 (7):838–848

    Article  Google Scholar 

  11. Hu Y, Lee H-K, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE Trans Circuits Syst Video Technol 19(2):250–260

    Article  Google Scholar 

  12. Hu X, Zhang W, Li X, Yu N (2015) Minimum rate prediction and optimized histograms modification for reversible data hiding. IEEE Trans Inf Forensics Secur 10 (3):653–664

    Article  Google Scholar 

  13. Huang L-C, Tseng L-Y, Hwang M-S (2013) A reversible data hiding method by histogram shifting in high quality medical images. J Syst Softw 86(3):716–727

    Article  Google Scholar 

  14. Jemmett DG, Miller GE (2012) Medical imaging archives delivered as Cloud-based service offerings, HP Business white paper, pp 1–11

  15. Kamstra L, Heijmans HJAM (2005) Reversible data embedding into images using wavelet techniques and sorting. IEEE Trans Image Process 14(12):2082–2090

    Article  MathSciNet  Google Scholar 

  16. Lee S, Yoo CD, Kalker T (2007) Reversible image watermarking based on integer-to-integer wavelet transform. IEEE Trans Inf Forensics Secur 2(3):321–330

    Article  Google Scholar 

  17. Li X, Yang B, Zeng T (2011) Effecient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20 (12):3524–3533

    Article  MathSciNet  MATH  Google Scholar 

  18. Li X, Li J, Li B, Yang B (2013) High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process 93 (1):198–205

    Article  MathSciNet  Google Scholar 

  19. Li X, Zhang W, Gui X, Yang B (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inf Forensics Secur 8(7):1091–1100

    Article  Google Scholar 

  20. Lima JB, Madeiro F, Sales FJR (2015) Encryption of medical images based on the cosine number transform. Signal Process Image Commun 35:1–8

    Article  Google Scholar 

  21. Luo L, Chen Z, Chen M, Zeng X, Xiong Z (2010) Reversible image watermarking using interpolation technique. IEEE Trans Inf Forensics Secur 5 (1):187–193

    Article  Google Scholar 

  22. Ma X, Pan Z, Hu S, Wang L (2015) High-fidelity reversible data hiding scheme based on multi-predictor sorting and selecting mechanism. J Vis Commun Image Represent 28:71–82

    Article  Google Scholar 

  23. Ni Z, Shi Y, Ansari N, Wei S (2006) Reversible Data Hiding. IEEE Trans Circuits Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  24. Ou B, Li X, Zhao Y, Ni R (2013) Reversible data hiding based on PDE predictor. J Syst Softw 86(10):2700–2709

    Article  Google Scholar 

  25. Pai P-Y, Chang C-C, Chan Y-K, Tsai M-H (2011) An adaptable threshold detector. Inf Sci 181(8):1463–1483

    Article  Google Scholar 

  26. Pei Q, Wang X, Li Y, Li H (2013) Adaptive reversible watermarking with improved embedding capacity. J Syst Softw 86(11):2841–2848

    Article  Google Scholar 

  27. Qin C, Hu Y-C (2016) Reversible data hiding in VQ index table with lossless coding and adaptive switching mechanism. Signal Process 129:48–55

    Article  Google Scholar 

  28. Qin C, Chang C-C, Jung H-T (2015) Reversible Data Hiding Scheme Based on Exploiting Modification Direction with Two Steganographic Images. Multimedia Tools and Appl 74(15):5861–5872

    Article  Google Scholar 

  29. Qin C, Chang C-C, Huang Y-H, Liao L-T (2013) An inpaintingassisted reversible steganographic scheme using a histogram shifting mechanism. IEEE Trans Circuits Syst Video Technol 23(7):1109–1118

    Article  Google Scholar 

  30. Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible Watermarking Algorithm using Sorting and Prediction. IEEE Trans Circuits Syst Video Technol 19(7):989–999

    Article  Google Scholar 

  31. Shi Y-Q, Li X-L, Zhang X-P, Wu H-T, Ma B (2016) Reversible Data Hiding: Advances in the Past Two Decades. IEEE Access 4:3210–3237

    Article  Google Scholar 

  32. Tian J (2002) Wavelet-based reversible watermarking for authentication. Proc SPIE 4675:679–690

    Article  Google Scholar 

  33. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  34. Thodi DM, Rodriguez JJ (2004) Prediction-error based reversible watermarking Proceedings IEEE Int. Conference Inf. Processing, pp 1549–1552

    Google Scholar 

  35. Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730

    Article  MathSciNet  Google Scholar 

  36. Wang Z, Bovik AC, Sheikh HR et al (2004) Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  37. Willems F, Maas D, Kalker T (2004) Semantic Lossless Source Coding 42nd Annual Allerton Conference on Communication, Control and Computing, Monticello, Illinois, USA, pp 1411–1418

    Google Scholar 

  38. Wu H-T, Huang J (2012) Reversible image watermarking on prediction errors by efficient histogram modification. Signal Process 92(12):3000–3009

    Article  Google Scholar 

  39. Wu H-T, Dugelay J-L, Shi Y-Q (2015) Reversible Image Data Hiding with Contrast Enhancement. IEEE Signal Process Lett 22(1):81–85

    Article  Google Scholar 

  40. Yang Y, Ming J (2016) Image quality assessment based on the space similarity decomposition model. Signal Process 120:797–805

    Article  Google Scholar 

  41. Yang Y, Zhang WM, Liang D, Yu NH (2016) Reversible Data Hiding in Medical Images with Enhanced contrast in Texture Area. Digital Signal Process 52:13–24

    Article  Google Scholar 

  42. Yin Z-X, Luo B (2016) MDE-based Image Steganography with Large Embedding Capacity. Security and Communication Networks 9(8):721–728

    Article  Google Scholar 

  43. Zhang W, Hu X, Yu N et al (2013) Recursive Histogram Modification: Establishing Equivalency Between Reversible data Hiding and Lossless Data Compression. IEEE Trans Image Process 22(7):2775–2785

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiming Zhang.

Additional information

This work was supported in part by the Natural Science Foundation of China under Grant U1636201,61572452,61502007, in part by the Natural Science Research Project of Anhui province under Grant 1608085MF125, in part by the NO.58 China Postdoctoral Science Foundation under Grant 2015M582015, in part by the backbone teacher training program of Anhui University, in part by the Doctoral Scientific Research Foundation of Anhui University under Grant J01001319.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, W., Liang, D. et al. A ROI-based high capacity reversible data hiding scheme with contrast enhancement for medical images. Multimed Tools Appl 77, 18043–18065 (2018). https://doi.org/10.1007/s11042-017-4444-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4444-0

Keywords

Navigation