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Abstract Content-Based Image Retrieval based on local features is computationally
expensive because of the complexity of both extraction and matching of local fea-
ture. On one hand, the cost for extracting, representing, and comparing local visual
descriptors has been dramatically reduced by recently proposed binary local features.
On the other hand, aggregation techniques provide a meaningful summarization of all
the extracted feature of an image into a single descriptor, allowing us to speed up and
scale up the image search. Only a few works have recently mixed together these two
research directions, defining aggregation methods for binary local features, in order
to leverage on the advantage of both approaches. In this paper, we report an extensive
comparison among state-of-the-art aggregation methods applied to binary features.
Then, we mathematically formalize the application of Fisher Kernels to Bernoulli
Mixture Models. Finally, we investigate the combination of the aggregated binary
features with the emerging Convolutional Neural Network (CNN) features. Our re-
sults show that aggregation methods on binary features are effective and represent a
worthwhile alternative to the direct matching. Moreover, the combination of the CNN
with the Fisher Vector (FV) built upon binary features allowed us to obtain a relative
improvement over the CNN results that is in line with that recently obtained using
the combination of the CNN with the FV built upon SIFTs. The advantage of using
the FV built upon binary features is that the extraction process of binary features is
about two order of magnitude faster than SIFTs.
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1 Introduction

Content-Based Image Retrieval (CBIR) is a relevant topic studied by many scientists
in the last decades. CBIR refers to the possibility of organizing archives contain-
ing digital pictures, so that they can be searched and retrieved by using their visual
content [17]. A specialization of the basic CBIR techniques include the techniques
of object recognition [74], where visual content of images is analyzed so that objects
contained in digital pictures are recognized, and/or images containing specific objects
are retrieved. Techniques of CBIR and object recognition are becoming increasingly
popular in many web search engines, where images can be searched by using their
visual content [25,9], and on smartphones apps, where information can be obtained
by pointing the smartphone camera toward a monument, a painting, a logo [24].

During the last few years, local descriptors, as for instance SIFT [50], SURF [8],
BRISK [46], ORB [61], to cite some, have been widely used to support effective
CBIR and object recognition tasks. A local descriptor is generally a histogram repre-
senting statistics of the pixels in the neighborhood of an interest point (automatically)
chosen in an image. Among the promising properties offered by local descriptors, we
mention the possibility to help mitigating the so called semantic gap [68], that is the
gap between the visual representation of images and the semantic content of images.
In most cases visual similarity does not imply semantic similarity.

Executing image retrieval and object recognition tasks, relying on local features,
is generally resource demanding. Each digital image, both queries and images in the
digital archives, are typically described by thousands of local descriptors. In order to
decide that two images match, since they contain the same or similar objects, local
descriptors in the two images need to be compared, in order to identify matching
patterns. This poses some problems when local descriptors are used on devices with
low resources, as for instance smartphones, or when response time must be very fast
even in presence of huge digital archives. On one hand, the cost for extracting local
descriptors, storing all descriptors of all images, and performing feature matching
between two images must be reduced to allow their interactive use on devices with
limited resources. On the other hand, compact representation of local descriptors and
ad hoc index structures for similarity matching [81] are needed to allow image re-
trieval to scale up with very large digital picture archives. These issues have been
addressed by following two different directions.

To reduce the cost of extracting, representing, and matching local visual descrip-
tors, researchers have investigated the use binary local descriptors, as for instance
BRISK and ORB. Binary features are built from a set of pairwise intensity com-
parisons. Thus, each bit of the descriptors is the result of exactly one comparison.
Binary descriptors are much faster to be extracted, are obviously more compact than
non-binary ones, and can also be matched faster by using the Hamming distance [28]
rather than the Euclidean distance. For example, in [61] it has been showed that ORB
is an order of magnitude faster than SURF, and over two orders faster than SIFT.
However, note that even if binary local descriptors are compact, each image is still
associated with thousand local descriptors, making it difficult to scale up to very large
digital archives.
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The use of the information provided by each local feature is crucial for tasks such
as image stitching and 3D reconstruction. For other tasks such as image classification
and retrieval, high effectiveness have been achieved using the quantization and/or
aggregation techniques which provide meaningful summarization of all the extracted
features of an image [36]. One profitable outcome of using quantization/aggregation
techniques is that they allow us to represent an image by a single descriptor rather
than thousands descriptors. This reduces the cost of image comparison and leads to
scale up the search to large database. On one hand, quantization methods, as for in-
stance the Bag-of-Words approach (BoW) [67], define a finite vocabulary of “visual
words”, that is a finite set of local descriptors to be used as representative. Every
possible local descriptors is thus represented by its closest visual word, that is the
closest element of the vocabulary. In this way images are described by a set (a bag)
of identifiers of representatives, rather than a set of histograms. On the other hand,
aggregation methods, as for instance Fisher Vectors (FV) [54] or Vectors of Locally
Aggregated Descriptors (VLAD) [36], analyze the local descriptors contained in an
image to create statistical summaries that still preserve the effectiveness power of
local descriptors and allow treating them as global descriptors. In both cases index
structures for approximate or similarity matching [81] can be used to guarantee scal-
ability on very large datasets.

Since quantization and aggregation methods are defined and used almost exclu-
sively in conjunction with non-binary features, the cost of extracting local descriptors
and to quantize/aggregate them on the fly, is still high. Recently, some approaches
that attempt to integrate the binary local descriptors with the quantization and ag-
gregation methods have been proposed in literature [21,26,45,76,73,82]. In these
proposals, the aggregation is directly applied on top of binary local descriptors. The
objective is to improve efficiency and reduce computing resources needed for image
matching by leveraging on the advantages of both aggregation techniques (effective
compact image representation) and binary local features (fast feature extraction), by
reducing, or eliminating the disadvantages.

The contribution of this paper is providing an extensive comparisons and analysis
of the aggregation and quantization methods applied to binary local descriptors also
providing a novel formulation of Fisher Vectors built using the Bernoulli Mixture
model (BMM), referred to as BMM-FV. Moreover, we investigate the combination
of BMM-FVs and other encodings of binary features with the Convolutional Neural
Network [60] features as other case of use of binary feature aggregations. We focus
on cases where, for efficiency issues [61,29], the binary features are extracted and
used to represent images. Thus, we compare aggregations of binary features in order
to find the most suitable techniques to avoid the direct matching. We expect this topic
to be relevant for application that uses binary features on devices with low CPU and
memory resources, as for instance mobile and wearable devices. In these cases the
combination of aggregation methods with binary local features is very useful and led
to scale up image search on large scale, where direct matching is not feasible.

This paper extends our early work on aggregations of binary features [3] by a)
providing a formulation of the Fisher Vector built using the Bernoulli Mixture Model
(BMM) which preserve the structure of the traditional FV built using a Gaussian
Mixture Model (existing implementations of the FV can be easily adapted to work
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also with BMMs); b) comparison of the BMM-FV against the other state-of-the-
art aggregation approaches on two standard benchmarks (INRIA Holidays1 [33] and
Oxford5k [58]); c) evaluation of the BMM-FV on the top of several binary local fea-
tures (ORB [61], LATCH [47], AKAZE [1]) whose performances have not been yet
reported on benchmark for image retrieval; d) evaluation of the combination of the
BMM-FV with the emerging Convolutional Neural Network (CNN) features, includ-
ing experiments on a large scale. The results of our experiments show that the use of
aggregation and quantization methods with binary local descriptors is generally effec-
tive even if, as expected, retrieval performance is worse than that obtained applying
the same aggregation and quantization methods directly to non-binary features. The
BMM-FV approach provided us with performance results that are better than all the
other aggregation methods on binary descriptors. In addition, our results show that
some aggregation methods led to obtain very compact image representation with a
retrieval performance comparable to the direct matching, which actually is the most
used approch to evaluate the similarity of images described by binary local features.
Moreover, we show that the combinations of BMM-FV and CNN improve the lat-
ter retrieval performances and achieves effectiveness comparable with that obtained
combining CNN and FV built upon SIFTs, previous proposed in [13]. The advantage
of combining BMM-FV and CNN instead of combining traditional FV and CNN is
that BMM-FV relies on binary features whose extraction is noticeably faster than
SIFT extraction.

The paper is organized as follows. Section 2 offers an overview of other articles
in literature, related to local features, binary local features, and aggregation meth-
ods. Section 3 discusses how existing aggregation methods can be used with binary
local features. It also contains our approach for applying Fisher Vectors on binary
local features and how combining it with the CNN features. Section 4 discusses the
evaluation experiments and the obtained results. Section 5 concludes.

2 Related Work

The research for effective representation of visual feature for images has received
much attention over the last two decades. The use of local features, such as SIFT
[50] and SURF [8], is at the core of many computer vision applications, since it
allows systems to efficiently match local structures between images. To date, the
most used and cited local feature is the Scale Invariant Feature Transformation (SIFT)
[50]. The success of SIFT is due to its distinctiveness that enable to effectively find
correct matches between images. However, the SIFTs extraction is costly due to the
local image gradient computations. In [8] integral images were used to speed up the
computation and the SURF feature was proposed as an efficient approximation of the
SIFT. To further reduce the cost of extracting, representing, and matching local visual
descriptors, researchers have investigated the binary local descriptors. These features
have a compact binary representation that is not the result of a quantization, but rather

1 Respect to the experimental setting used in our previous work [3], we improved the computation of
the local features before the aggregation phase which allowed us to obtain better performances for BoW
and VLAD on the INRIA Holidays dataset than that reported in [3].
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is computed directly from pixel-intensity comparisons. One of the early studies in
this direction was the Binary Robust Independent Elementary Features (BRIEF) [12].
Rublee et al. [61] proposed a binary feature, called ORB (Oriented FAST and Rotated
BRIEF), whose extraction process is an order of magnitude faster than SURF, and
two orders faster than SIFT according to the experimental results reported in [61,52,
29]. Recently, several other binary local features have been proposed, such as BRISK
[46], AKAZE [1], and LATCH [47].

Local features have been widely used in literature and applications, however since
each image is represented by thousands of local features there is a significant amount
of memory consumption and time required to compare local features within large
databases. Aggregation techniques have been introduced to summarize the informa-
tion contained in all the local features extracted from an image into a single descrip-
tor. The advantage is twofold: 1) reduction of the cost of image comparison (each
image is represented by a single descriptor rather than thousands descriptors); 2) ag-
gregated descriptors have been proved to be particularly effective for image retrieval
and classification task.

By far, the most popular aggregation method has been the Bag-of-Word (BoW)
[67]. BoW was initially proposed for matching object in video and has been studied
in many other papers, such as [16,58,34,36], for classification and CBIR tasks. BoW
uses a visual vocabulary to quantize the local descriptors extracted from images; each
image is then represented by a histogram of occurrences of visual words. The BoW
approach used in computer vision is very similar to the BoW used in natural language
processing and information retrieval [62], thus many text indexing techniques, such
as inverted files [78], have been applied for image search. Search results obtained us-
ing BoW in CBIR have been improved by exploiting additional geometrical informa-
tion [58,53,70,83], applying re-ranking approaches [58,33,15,72] or using better en-
coding techniques, such as the Hamming Embedding [33], soft/multiple-assignment
[59,22,34], sparse coding [79,11], locality-constrained linear coding [77] and spatial
pyramids [43].

Recently, alternative encodings schemes, like the Fisher Vectors (FVs) [54] and
the Vector of Locally Aggregated Descriptors (VLAD) [36], have attracted much
attention because of their effectiveness in both image classification and large-scale
image search. The FV uses the Fisher Kernel framework [32] to transform an in-
coming set of descriptors into a fixed-size vector representation. The basic idea is to
characterize how a sample of descriptors deviates from an average distribution that
is modeled by a parametric generative model. The Gaussian Mixture Model (GMM)
[51] is typically used as generative model and might be understood as a “probabilis-
tic visual vocabulary”. While BoW counts the occurrences of visual words and so
takes in account just 0-order statistics, the FV offers a more complete representation
by encoding higher order statistics (first, and optionally second order) related to the
distribution of the descriptors. The FV results also in a more efficient representation,
since fewer visual words are required in order to achieve a given performance. How-
ever, the vector representation obtained using BoW is typically quite sparse while
that obtained using the Fisher Kernel is almost dense. This leads to some storage and
input/output issues that have been addressed by using techniques of dimensionality
reduction, such as the Principal Component Analysis (PCA) [10], compression with
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product quantization [27,35] and binary codes [56]. In [13] a fusion of FV and CNN
features [60,20] was proposed and other works [55,65,69] have started exploring the
combination of FVs and CNNs by defining hybrid architectures.

The VLAD method, similarly to BoW, starts with the quantization of the local
descriptors of an image by using a visual vocabulary learned by k-means. Differently
from BoW, VLAD encodes the accumulated difference between the visual words and
the associated descriptors, rather than just the number of descriptors assigned to each
visual word. Thus, VLAD exploits more aspects of the distribution of the descrip-
tors assigned to a visual word. As highlighted in [37], VLAD might be viewed as a
simplified non-probabilistic version of the FV. In the original scheme [36], as for the
FV, VLAD was L2-normalized. Subsequently a power normalization step was intro-
duced for both VLAD and FV [37,56]. Furthermore, PCA dimensionality reduction
and product quantization were applied and several enhancements to the basic VLAD
were proposed [6,14,18,83].

The aggregation methods have been defined and used almost exclusively in con-
junction with local features that have a real-valued representation, such as SIFT and
SURF. Few articles have addressed the problem of modifying the state-of-the-art ag-
gregation methods to work with the emerging binary local features. In [21,82,26,45]
the use of ORB descriptors was integrated into the BoW model by using different
clustering algorithms. In [21] the visual vocabulary was calculated by binarizing the
centroids obtained using the standard k-means. In [82,26,45] the k-means clustering
was modified to fit the binary features by replacing the Euclidean distance with the
Hamming distance, and by replacing the mean operation with the median operation.
In [76] the VLAD image signature was adapted to work with binary descriptors: k-
means is used for learning the visual vocabulary and the VLAD vectors are computed
in conjunction with an intra-normalization and a final binarization step. Recently, also
the FV scheme has been adapted for the use with binary descriptors: Uchida et al. [73]
derived a FV where the Bernoulli Mixture Model was used instead of the GMM to
model binary descriptors, while Sanchez and Redolfi [64] generalized the FV for-
malism to a broader family of distributions, known as the exponential family, that
encompasses the Bernoulli distribution as well as the Gaussian one.

3 Image Representations

In order to decide if two images contain the same object or have a similar visual
content, one needs an appropriate mathematical description of each image. In this
section, we describe some of the most prominent approaches to transform an input
image into a numerical descriptor. First we describe the principal aggregation tech-
niques and the application of them to binary local features. Then, the emerging CNN
features are presented.
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3.1 Aggregation of local features

In the following we review how quantization and aggregation methods have been
adapted to cope with binary features. Specifically we present the BoW [67], the
VLAD [36] and the FV [54] approaches.

3.1.1 Bag-of-Words

The Bag of (Visual) Words (BoW) [67] uses a visual vocabulary to group together
the local descriptors of an image and represent each image as a set (bag) of visual
words. The visual vocabulary is built by clustering the local descriptors of a dataset,
e.g. by using k-means [49]. The cluster centers, named centroids, act as the visual
words of the vocabulary and they are used to quantize the local descriptors extracted
from the images. Specifically, each local descriptor of an image is assigned to its
closest centroid and the image is represented by a histogram of occurrences of the
visual words. The retrieval phase is performed using text retrieval techniques, where
visual words are used in place of text word and considering a query image as dis-
junctive term-query. Typically, the cosine similarity measure in conjunction with a
term weighting scheme, e.g. term frequency-inverse document frequency (tf-idf), is
adopted for evaluating the similarity between any two images.

BoW and Binary Local Features In order to extend the BoW scheme to deal with
binary features we need a cluster algorithm able to deal with binary strings and Ham-
ming distance. The k-medoids [39] are suitable for this scope, but they requires a
computational effort to calculate a full distance matrix between the elements of each
cluster. In [26] it was proposed to use a voting scheme, named k-majority, to process
a collection of binary vectors and seek for a set of good centroids, that will become
the visual words of the BoW model. An equivalent representation is given also in [82,
45], where the BoW model and the k-means clustering have been modified to fit the
binary features by replacing the Euclidean distance with the Hamming distance, and
by replacing the mean operation with the median operation.

3.1.2 Vector of Locally Aggregated Descriptors

The Vector of Locally Aggregated Descriptors (VLAD) was initially proposed in
[36]. As for the BoW, a visual vocabulary {µ1, . . . ,µK} is first learned using a clus-
tering algorithm (e.g. k-means). Then each local descriptor xt of a given image is
associated with its nearest visual word NN(xt) in the vocabulary and for each cen-
troid µi the differences xt − µi of the vectors xt assigned to µi are accumulated:
vi = ∑xt :NN(xt )=µi xt − µi. The VLAD is the concatenation of the residual vectors vi,
i.e. V = [v>1 . . .v>K ]. All the residuals have the same size D which is equal to the size
of the used local features. Thus the dimensionality of the whole vector V is fixed too
and it is equal to DK.
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VLAD and Binary Local Features A naive way to apply the VLAD scheme to binary
local descriptors is treating binary vectors as a particular case of real-valued vectors.
In this way, the k-means algorithm can be used to build the visual vocabulary and
the difference between the centroids and the descriptors can be accumulated as usual.
This approach has also been used in [76], where a variation to the VLAD image
signature, called BVLAD, has been defined to work with binary features. Specifically,
the BVLAD is the binarization (by thresholding) of a VLAD obtained using power-
law, intra-normalization, L2 normalization and multiple PCA. Thereafter we have not
evaluated the performance of the BVLAD because the binarization of the final image
signature is out of the scope of this paper.

Similarly to BoW, various binary-cluster algorithms (e.g. k-medoids and k-majority)
and the Hamming distance can be used to build the visual vocabulary and associate
each binary descriptor to its nearest visual word. However, as we will see, the use of
binary centroids may provide less discriminant information during the computation
of the residual vectors.

3.1.3 Fisher Vector

The Fisher Kernel [32] is a powerful framework adopted in the context of image clas-
sification in [54] as efficient tool to encode image local descriptors into a fixed-size
vector representation. The main idea is to derive a kernel function to measure the sim-
ilarity between two sets of data, such as the sets of local descriptors extracted from
two images. The similarity of two sample sets X and Y is measured by analyzing the
difference between the statistical properties of X and Y , rather than comparing di-
rectly X and Y . To this scope a probability distribution p(·|λ ) with some parameters
λ ∈ Rm is first estimated on a training set and it is used as generative model over
the the space of all the possible data observations. Then each set X of observations
is represented by a vector, named Fisher Vector, that indicates the direction in which
the parameter λ of the probability distribution p(·|λ ) should be modified to best fit
the data in X . In this way, two samples are considered similar if the directions given
by their respective Fisher Vectors are similar. Specifically, as proposed in [32], the
similarity between two sample sets X and Y is measured using the Fisher Kernel, de-
fined as K(X ,Y ) = (GX

λ
)>F−1

λ
GY

λ
, where Fλ is the Fisher Information Matrix (FIM)

and GX
λ
= ∇λ log p(X |λ ) is referred to as the score function.

The computation of the Fisher Kernel is costly due the multiplication by the in-
verse of the FIM. However, by using the Cholesky decomposition F−1

λ
= L>

λ
Lλ , it is

possible to re-written the Fisher Kernel as an Euclidean dot-product, i.e. K(X ,Y ) =
(G X

λ
)>G Y

λ
, where G X

λ
= Lλ GX

λ
is the Fisher Vector (FV) of X [56].

Note that the FV is a fixed size vector whose dimensionality only depends on the
dimensionality m of the parameter λ . The FV is further divided by |X | in order to
avoid the dependence on the sample size [63] and L2-normalized because, as proved
in [57,63], this is a way to cancel-out the fact that different images contain different
amounts of image-specific information (e.g. the same object at different scales).

The distribution p(·|λ ), which models the generative process in the space of the
data observation, can be chosen in various way. The Gaussian Mixture Model (GMM)
is typically used to model the distribution of non-binary features considering that, as
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pointed in [51], any continuous distribution can be approximated arbitrarily well by
an appropriate finite Gaussian mixture. Since the Bernoulli distribution models an
experiment that has only two possible outcomes (0 and 1), a reasonable alternative to
characterize the distribution of a set of binary features is to use a Bernoulli Mixture
Model (BMM).

FV and Binary Local Features In this work we derive and test an extension of the
FV built using BMM, called BMM-FV, to encode binary features. Specifically, we
chose p(·|λ ) to be multivariate Bernoulli mixture with K components and parameters
λ = {wk,µkd , k = 1, . . . ,K, d = 1, . . . ,D}:

p(xt |λ ) =
K

∑
k=1

wk pk(xt) (1)

where

pk(xt) =
D

∏
d=1

µ
xtd
kd (1−µkd)

1−xtd (2)

and
K

∑
k=1

wk = 1, wk > 0 ∀k = 1, . . . ,K. (3)

To avoid enforcing explicitly the constraints in (3), we used the soft-max formal-
ism [40,63] for the weight parameters: wk = exp(αk)/∑

K
i=1 exp(αi).

Given a set X = {xt , t = 1, . . . ,T} of D-dimensional binary vectors xt ∈ {0,1}D

and assuming that the samples are independent we have that the score vector GX
λ

with
respect to the parameter λ = {αk,µkd , k = 1, . . . ,K, d = 1, . . . ,D} is calculated (see
Appendix A) as the concatenation of

GX
αk

=
T

∑
t=1

∂ log p(xt |λ )
∂αk

=
T

∑
t=1

(γt(k)−wk)

GX
µkd

=
T

∑
t=1

∂ log p(xt |λ )
∂ µkd

=
T

∑
t=1

γt(k)
(

xtd−µkd

µkd(1−µkd)

)
where γt(k) = p(k|xt ,λ ) is the occupancy probability (or posterior probability). The
occupancy probability γt(k) represents the probability for the observation xt to be gen-
erated by the k-th Bernoulli and it is calculated as γt(k) = wk pk(xt)/∑

K
j=1 w j p j(xt).

The FV of X is then obtained by normalizing the score GX
λ

by the matrix Lλ ,
which is the square root of the inverse of the FIM, and by the sample size T . In the
Appendix B we provide an approximation of FIM under the assumption that the oc-
cupancy probability γt(k) is sharply peaked on a single value of k for each descriptor
xt , obtained following an approach very similar to that used in [63] for the GMM
case. By using our FIM approximation, we got the following normalized gradient:

G X
αk

=
1

T
√

wk

T

∑
t=1

(γt(k)−wk)

G X
µkd

=
1

T
√

wk

T

∑
t=1

γt(k)

(
xtd−µkd√
µkd(1−µkd)

)
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Table 1 Comparison of the structure of the FVs derived using BMM with that derived using GMM. Pa-
rameters for BMM are λ B = {wB

k ,µ
B
kd , k = 1, . . . ,K, d = 1, . . . ,D} and for GMM are λ G = {wG

k ,µ
G
kd ,Σ

G
k =

diag(σG
k1, . . . ,σ

G
kD,), k = 1, . . . ,K, d = 1, . . . ,D}, where wB

k , µB
k are the mixture weight and the mean vec-

tor of the k-th Bernoulli and wG
k µG

k , Σ G
k are respectively the mixture weight, mean vector and covariance

matrix of Gaussian k.

GMM-FV [63]

G X
αG

k
=

1

T
√

wG
k

T

∑
t=1

(
γ

G
t (k)−wG

k

)
G X

µG
kd
=

1

T
√

wG
k

T

∑
t=1

γ
G
t (k)

xtd −µG
kd

σG
kd

G X
σG

kd
=

1

T
√

wG
k

T

∑
t=1

γ
G
t (k)

1√
2

[
(xtd −µG

kd)
2

(σG
kd)

2
−1

]

BMM-FV (our formalization)

G X
αB

k
=

1

T
√

wB
k

T

∑
t=1

(
γ

B
t (k)−wB

k
)

G X
µB

kd
=

1

T
√

wB
k

T

∑
t=1

γ
B
t (k)

xtd −µB
kd√

µB
kd(1−µB

kd)

BMM-FV (Uchida et. al [73])

(G X
αB

k
not explicitly derived in [73])

G X
µB

kd
=

∑
T
t=1 γt(k)

(−1)1−xtd

(µB
kd )

xtd (1−µB
kd)

1−xtd

T

√
TwB

k

(
∑

K
i=1 wB

i µB
id

(µB
kd )

2 +
∑

K
i=1 wB

i (1−µB
id )

(1−µB
kd )

2

)

The final BMM-FV is the concatenation of G X
αk

and G X
µkd

for k = 1, . . . ,K, d =
1, . . . ,D and is therefore of dimension K(D+1).

An extension of the FV by using the BMM has been also carried in [73,64]. Our
approach differs from the one proposed in [73] in the approximation of the square root
of the inverse of the FIM (i.e., Lλ ) . It is worth noting that our formalization preserves
the structure of the traditional FV derived by using the GMM, where Gaussian means
and variances are replaced by Bernoulli means µkd and variances µkd(1− µkd) (see
Table 1).

In [64], the FV formalism was generalized to a broaden family of distributions
knows as exponential family that encompasses the Bernoulli distribution as well as
the Gaussian one. However, [64] lacks in an explicit definition of the FV and of the
FIM approximation in the case of BMM which was out of the scope of their work.
Our formulation differs from that of [64] in the choice of the parameters used in
the gradient computation of the score function 2. A similar difference holds also for

2 A Bernoulli distribution p(x) = µx(1− µ)1−x of parameter µ can be written as exponential distri-
bution p(x) = exp(ηx− log(1+ eη )) where η = log( µ

1−µ
) is the natural parameter. In [64] the score
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the FV computed on the GMM, given that in [64] the score function is computed
w.r.t. the natural parameters of the Gaussian distribution rather than the mean and the
variance parameters which are typically used in literature for the FV representation
[56,54,63]. Unfortunately, the authors of [64] didn’t experimentally compare the FVs
obtained using or not the natural parameters.

Sànchez [63] highlights that the FV derived from GMM can be computed in
terms of the following 0-order and 1-order statistics: S0

k = ∑
T
t=1 γt(k) ∈ R, S1

k =

∑
T
t=1 γt(k)xt ∈ RD. Our BMM-FV can be also written in terms of these statistics as

G X
αk

=
1

T
√

wk
(S0

k −Twk)

G X
µkd

=
S1

kd−µkdS0
k

T
√

wkµkd(1−µkd)
.

We finally used power-law and L2 normalization to improve the effectiveness of
the BMM-FV approach.

3.2 Combination of Convolutional Neural Network Features and Aggregations of
Binary Local Feature

Convolutional Neural Networks (CNNs) [44] have brought breakthroughs in the com-
puter vision area by improving the state-of-the-art in several domains, such as image
retrieval, image classification, object recognition, and action recognition. Depp CNN
allows a machine to automatically learn representations of data with multiple lev-
els of abstraction which can be used for detection or classification tasks. CNNs are
neural networks specialized for data that has a grid-like topology as image data. The
applied discrete convolution operation results in a multiplication by a matrix which
has several entries constrained to be equal to other entries. Three important ideas are
behind the success CNNs: sparse connectivity, parameter sharing, and equivariant
representations [23].

In image retrieval, the activations produced by an image within the top layers of
the CNN have been successfully used as a high-level descriptors of the visual con-
tent of the image [20]. The results reported in [60] shows that these CNN features,
compared by using the Euclidean distance, achieve state-of-the-art quality in terms
of mAP. Most of the papers reporting results obtained using the CNN features main-
tain the Rectified Linear Unit (ReLU) transform [20,60,13], i.e., negative activations
values are discarded replacing them with 0. Values are typically L2 normalized [7,
60,13] and we did the same in this work. In Section 4.2 we describe the CNN model
used in our experiments.

Recently, in [13] it has been shown that the information provided by the FV built
upon SIFT helps to further improve the retrieval performance of the CNN features
and a combination of FV and CNN features has been used as well [13,4]. However,
the benefits of such combinations are clouded by the cost of extracting SIFTs that can

function is computed considering the gradient w.r.t. the natural parameters η while in this paper we used
the gradient w.r.t. the standard parameter µ of the Bernoulli (as also done in [73] ).
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Table 2 Average time costs for computing various image representations using a CPU implementation.
The cost of computing the CNN feature of an image was estimated using a pre-learned AlexNet model
and the Caffe framework [38] on an Intel i7 3.5 GHz. The values related to the FV refers only to the cost
of aggregating the local descriptors of an image into a single vector and do not encompass the cost of
extracting the local features, neither the learning of the Gaussian or the Bernoulli Mixture Model which is
calculated off-line. The cost of computing FV varies proportionally with T KD, where T is the number of
local features extracted from an image, K is the number of mixtures of Gaussian/Bernoulli, and D is the
dimensionality of each local feature; we reported the approximate cost for T = 2,000 and KD = 64 ∗ 64
and KD = 64∗256 on an Intel i7 3.5 GHz. The cost of SIFT/ORB local feature extraction was estimated
according to [29] by considering about 2,000 features per image.

CNN FV Encoding SIFT ORB
Computing time

per image ∼300 ms ∼40 ms [KD = 64∗64] ∼1200 ms ∼26 ms∼160 ms [KD = 256∗64]

be considered to high with respect to the cost of computing the CNN features (see
Table 2). Since the extraction of binary local features is up two times faster than SIFT,
in this work we also investigate the combination of CNN features with aggregations
of binary local feature, including BMM-FV.

We combined BMM-FV and CNN using the following approach. Each image was
represented by a couple (c, f ), where c and f were respectively the CNN descriptor
and the BMM-FV of the image. Then, we evaluated the distance d between two
couples (c1, f1) and (c2, f2) as the convex combination between the L2 distances of
the CNN descriptors (i.e. ‖c1− c2‖2) and the BMM-FV descriptors (i.e. ‖ f1− f2‖2).
In other words, we defined the distance between two couples (c1, f1) and (c2, f2) as

d
(
(c1, f1),(c2, f2)

)
= α ‖c1− c2‖2 +(1−α)‖ f1− f2‖2 (4)

with 0 ≤ α ≤ 1. Choosing α = 0 corresponds to use only FV approach, while α =
1 correspond to use only CNN features. Please note that in our case both the FV
and the CNN features are L2 normalized so the distance function between the CNN
descriptors has the same range value of the distance function between the BMM-FV
descriptors.

Similarly, combinations between CNN features and other image descriptors, such
as GMM-FV, VLAD, and BoW can be considered by using the convex combina-
tion of the respective distances. Please note that whenever the range of the two used
distances is not the same, the distances should be rescaled before the convex combi-
nation (e.g. divide each distance function by its maximum value).

4 Experiments

In this section we evaluate and compare the performance of the techniques described
in this paper to aggregate binary local descriptors. Specifically, in the Subsection 4.3
we compare the BoW, the VLAD, the FV based on the GMM, and the BMM-FV
approach to aggregate ORB binary features. Since the BMM-FV achieved the best
results over the other tested approaches, in the Subsection 4.4 we further evaluate
the performance of the BMM-FVs using different binary features (ORB, LATCH,
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AKAZE) and combining them with the CNN features. Finally, in the Subsection 4.5,
we report experimental results on large scale.

In the following, we first introduce the datasets used in the evaluations (Subsec-
tion 4.1) and we describe our experimental setup (Subsection 4.2). We then report
results and their analysis.

4.1 Datasets

The experiments were conducted using two benchmark datasets, namely INRIA Hol-
idays [33] and Oxford5k [58], that are publicly available and often used in the context
of image retrieval [36,83,33,5,56,37,71].

INRIA Holidays [33] is a collection of 1,491 images which mainly contains per-
sonal holidays photos. The images are of high resolution and represent a large variety
of scene type (natural, man-made, water, fire effects, etc). The dataset contains 500
queries, each of which represents a distinct scene or object. For each query a list of
positive results is provided. As done by the authors of the dataset, we resized the im-
ages to a maximum of 786,432 pixels (768 pixels for the smaller dimension) before
extracting the local descriptors.

Oxford5k [58] consists of 5,062 images collected from Flickr. The dataset com-
prise 11 distinct Oxford buildings together with distractors. There are 55 query im-
ages: 5 queries for each building. The collection is provided with a comprehensive
ground truth. For each query there are four image sets: Good (clear pictures of the
object represented in the query), OK (images where more that 25% of the object is
clearly visible), Bad (images where the object is not present) and Junk (images where
less than 25% of the object is visible or images with high level of distortion).

As in many other articles, e.g. [36,33,59,37], all the learning stages (clustering,
etc.) were performed off-line using independent image collections. Flickr60k dataset
[33] was used as training set for INRIA Holidays. It is composed of 67,714 im-
ages randomly extracted from Flickr. The experiments on Oxford5k were conducted
performing the learning stages on Paris6k dataset [59], that contains 6,300 high res-
olution images obtained from Flickr by searching for famous Paris landmarks.

For large-scale experiments we combined the Holidays dataset with the 1 million
MIRFlickr dataset [31], used as distractor set as also done in [33,2]. Compared to
Holidays, the Flickr datasets is slightly biased, because it includes low-resolution
images and more photos of humans.

4.2 Experimental settings

In the following we report some details on how the features for the various approaches
were extracted.

Local features. In the experiments we used ORB [61], LATCH [47], and AKAZE
[1] binary local features that were extracted by using OpenCV (Open Source
Computer Vision Library)3. We detected up to 2,000 local features per image.

3 http://opencv.org/

http://opencv.org/
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Visual Vocabularies and Bernoulli/Gaussian Mixture Models. The visual vocab-
ularies used for building the BoW and VLAD representations were computed
using several clustering algorithms, i.e. k-medoids, k-majority and k-means. The
k-means algorithm was applied to the binary features by treating the binary vec-
tors as real-valued vectors. The parameters λ B =

{
wB

k ,µ
B
kd

}
k=1,...,K,d=1,...,D of the

BMM and λ G =
{

wG
k ,µ

G
kd ,σ

G
kd

}
k=1,...,K,d=1,...,D of the GMM (where K is the num-

ber of mixture components and D is the dimension of each local descriptor) were
learned independently by optimizing a maximum-likelihood criterion with the
Expectation Maximization (EM) algorithm [10]. EM is an iterative method that is
deemed to have converged when the change in the likelihood function, or alterna-
tively in the parameters λ , falls below some threshold ε . As stopping criterion we
used the convergence in L2-norm of the mean parameters, choosing ε = 0.05. As
suggested in [10], the BMM/GMM parameters used in EM algorithm were ini-
tialized with: (a) 1/K for the mixing coefficients wB

k and wG
k ; (b) random values

chosen uniformly in the range (0.25,0.75), for the BMM means µB
kd ; (c) cen-

troids precomputed using k-means for the GMM means µG
kd ; (d) mean variance

of the clusters found using k-means for the diagonal elements σG
kd of the GMM

covariance matrices.
All the learning stages, i.e. k-means, k-medoids, k-majority and the estimation of
GMM/BMM, were performed using in order of 1M descriptors randomly selected
from the local features extracted on the training sets (namely Flickr60k for INRIA
Holidays and Paris6k for Oxford5k).

BoW, VLAD, FV. The various encodings of the local feature (as well as the visual
vocabularies and the BMM/GMM) were computed by using our Visual Informa-
tion Retrieval library that is publicly available on GitHub4. These representations
are all parametrized by a single integer K. It corresponds to the number of cen-
troids (visual words) used in BoW and VLAD, and to the number of mixture
components of GMM/BMM used in FV representations.
For the FVs, we used only the components Gµ associated with the mean vectors
because, as happened in the non-binary case, we observed that the components
related to the mixture weights do not improve the results.
As a common post-processing step [57,37], both the FVs and the VLADs were
power-law normalized and subsequently L2-normalized. The power-law normal-
ization is parametrized by a constant β and it is defined as x→ |x|β sign(x). In our
experiments we used β = 0.5.
We also applied PCA to reduce VLAD and FV dimensionality. The projection
matrices were estimated on the training datasets.

CNN features. We used the pre-trained HybridNet [84] model, downloaded from
the Caffe Model Zoo5. The architecture of HybridNet is the same as the BVLC
Reference CaffeNet6 which mimics the original AlexNet [41], with minor vari-
ations as described in [38]. It has 8 weight layers (5 convolutional + 3 fully-
connected). The model has been trained on 1,183 categories (205 scene cate-

4 https://github.com/ffalchi/it.cnr.isti.vir
5 https://github.com/BVLC/caffe/wiki/Model-Zoo
6 https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
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gories from Places Database [84] and 978 object categories from ImageNet [19])
with about 3.6 million images.
In the test phase we used Caffe and we extracted the output of the first fully-
connected layer (fc6) after applying the Rectified Linear Unit (ReLU) transform.
The resulting 4,096-dimensional descriptors were L2 normalized.
As preprocessing step we warped the input images to the canonical resolution of
227×227 RGB (as also done in [20]).

Feature comparison and performance measure. The cosine similarity in conjunc-
tion with a term weighting scheme (e.g., tf-idf) is adopted for evaluating the
similarity between BoW representations, while the Euclidean distance is used
to compare VLAD, FV and CNN-based image signatures. Please note that the
Euclidean distance is equivalent to the cosine similarity whenever the vectors are
L2-normalized, as in our case7.
The image comparison based on the direct matching of the local features (i.e.
without aggregation) was performed adopting the distance ratio criterion pro-
posed in [50,29]. Specifically, candidate matches to local features of the image
query are identified by finding their nearest neighbors in the database of images.
Matches are discarded if the ratio of the distances between the two closest neigh-
bors is above the 0.8 threshold. Similarity between two images is computed as the
percentage of matching pairs with respect to the total local features in the query
image.
The retrieval performance of each method was measured by the mean average
precision (mAP). In the experiments on INRIA Holidays, we computed the av-
erage precision after removing the query image from the ranking list. In the ex-
periments on Oxford5k, we removed the junk images from the ranking before
computing the average precision, as recommended in [58] and in the evaluation
package provided with the dataset.

4.3 Comparison of Various Encodings of Binary Local Features

In Table 3 we summarize the retrieval performance of various aggregation methods
applied to ORB features, i.e. the BoW, the VLAD, the FV based on the GMM, and
the BMM-FV. In addition, in the last line of the table we reports the results obtained
without any aggregation, that we refer to as the direct matching of local features,
which was performed adopting the distance ratio criterion as previously described in
the Subsection 4.2.

In our experiments the FV derived as in [73] obtained very similar performance
to that of our BMM-FV, thus we have reported just the results obtained by using our

7 To search a database for the objects similar to a query we can use either a similarity function or a
distance function. In the first case, we search for the objects with greatest similarity to the query. In the
latter case, we search for the objects with lowest distance from the query. A similarity function is said
to be equivalent to a distance function if the ranked list of the results to query is the same. For example,
the Euclidean distance between two vectors (`2(x1,x2) = ‖x1− x2‖2) is equivalent to the cosine similarity
(scos(x1,x2) = (x1 · x2)/(‖x1‖2‖x2‖2)) whenever the vectors are L2- normalized (i.e. ‖x1‖2 = ‖x2‖2 = 1).
In fact, in such case, scos(x1,x2) = 1− 1

2 `2(x1,x2)
2, which implies that the ranked list of the results to a

query is the same (i.e., `2(x1,x2)≤ `2(x1,x3) iff scos(x1,x2)≥ scos(x1,x3)∀x1,x2,x3).



16 Giuseppe Amato · Fabrizio Falchi · Lucia Vadicamo

Table 3 Performance evaluation of various aggregation methods applied on ORB binary features. K in-
dicates the number of centroids (visual words) used in BoW and VLAD and the number of mixture com-
ponents of GMM/BMM used in FV; dim is the number of components of each vector representation.Bold
numbers denote maxima in the respective column.

Method Local Feature Learning
method K dim mAP

Holidays Oxford5k

BoW ORB k-means 20,000 20,000 44.9 22.2
BoW ORB k-majority 20,000 20,000 44.2 22.8
BoW ORB k-medoids 20,000 20,000 37.9 18.8

VLAD ORB k-means 64 16,384 47.8 23.6
PCA→ 1,024 46.0 23.2
PCA→ 128 30.9 19.3

VLAD ORB k-majority 64 16,384 32.4 16.6
VLAD ORB k-medoids 64 16,384 30.6 15.6

FV ORB GMM 64 16,384 42.0 20.4
PCA→ 1,024 42.6 20.3
PCA→ 128 35.5 19.6

FV BMM 64 16,384 49.6 24.3
PCA→ 1,024 51.3 23.4
PCA→ 128 44.6 19.1

No-aggr. ORB - - 38.1 31.7

Table 4 Aggregation methods on non-binary local features. Results are reported from [36,37].

Method Local Feature Learning
method K dim mAP

Holidays Oxford5k

BoW SIFT k-means 20,000 20,000 40.4 -
BoW SIFT PCA 64 k-means 20,000 20,000 43.7 35.4

VLAD SIFT k-means 64 8,192 52.6 -
PCA→ 128 51.0 -

VLAD SIFT PCA 64 k-means 64 4,096 55.6 37.8
PCA→ 128 55.7 28.7

FV SIFT GMM 64 8,192 49.5 -
PCA→ 128 49.2 -

FV SIFT PCA 64 GMM 64 4,096 59.5 41.8
PCA→ 128 56.5 30.1

formulation. Furthermore, we have not experimentally evaluated the FVs computed
using the gradient with respect to the natural parameters of a BMM or a GMM
as described in [64], because the evaluation of the retrieval performance obtained
using or not the natural parameters in the derivation of the score function is a more
general topic which reserve to be further investigated outside the specific context of
the encodings binary local features.

Among the various baseline aggregation methods (i.e. without using PCA), the
BMM-FV approach achieves the best retrieval performance, that is a mAP of 49.6%
on Holidays and 24.3% on Oxford. PCA dimensionality reduction from 16,384 to
1,024 components, applied on BMM-FV, marginally reduces the mAP on Oxford5k,
while on Holiday allows us to get 51.3% that is, for this dataset, the best result
achieved between all the other aggregation techniques tested on ORB binary features.

Good results are also achieved using VLAD in conjunction with k-means, which
obtains a mAP of 47.8% on Holidays and 23.6% on Oxford5k.
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Table 5 Retrieval performance of our BMM-FV on INRIA Holidays and Oxford5k. K is the number of
BMM mixtures. dim is the number of components of the final vector representation. Bold numbers denote
maxima in the respective column.

(a) Performance evaluation for increasing number K of Bernullian
mixture components

K dim mAP
Holidays Oxford5k

4 1,024 32.0 14.3
8 2,048 38.2 17.4
16 4,096 41.9 19.4
32 8,192 45.9 21.3
64 16,384 49.6 24.3

128 32,768 52.3 26.4
256 65,536 53.0 27.3
512 131,072 54.7 27.4

(b) Results after dimensionality reduction when K = 64 Bernoulli are
used

K dim mAP
Holidays Oxford5k

64 16,384 49.6 24.3
64 PCA→ 4,096 52.6 25.1
64 PCA→ 2,048 51.8 24.3
64 PCA→ 1,024 51.3 23.4
64 PCA→ 512 48.2 21.7
64 PCA→ 256 45.9 20.3
64 PCA→ 128 44.6 19.1
64 PCA→ 64 42.9 17.2

The BOW representation allows to get a mAP of 44.9%/44.2%/37.9% on Holi-
days and 22.2%/22.8%/18.8% on Oxford5k using respectively k-means/k-majority/k-
medoids for the learning of a visual vocabulary of 20,000 visual words.

The GMM-FV method gives results slight worse than BoW: 42.0% of mAP on
Holidays and 20.4% of mAP on Oxford5k. The use of PCA to reduce dimensions
from 16,384 to 1,024 lefts the results of GMM-FV on Oxford5k substantially un-
changed while slightly improved the mAP on Holidays (42.6%).

Finally, the worst performance are that of VLAD in combination with vocabular-
ies learned by k-majority (32.4% on Holidays and 16.6% on Oxford) and k-medoids
(30.6% on Holidays and 15.6% on Oxford).

It is generally interesting to note that on INRIA Holidays, the VLAD with k-
means, the BoW with k-means/k-majority, and the FVs are better than direct match.
In fact, mAP of direct matching of ORB descriptors is 38.1% while on Oxford5k the
direct matching reached a mAP of 31.7%.

In Table 5 we also report the performance of our derivation of the BMM-FV
varying the number K of Bernoulli mixture components and investigating the impact
of the PCA dimensionality reduction in the case of K = 64.

In Table (5(a)) we can see that with the Holidays dataset, the mAP grows from
32.0% when using only 4 mixtures to 54.7% when using K = 512. On Oxford5k,
mAP varies from 14.3% to 27.4%, respectively, for K = 4 and K = 512.
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Table (5(b)) shows that the best results are achieved when reducing the full size
BMM-FV to 4,096 with a mAP of 52.6% for Holidays and 25.1% for Oxfrod5k.

Analysis of the results Summing up, the results show that in the context of binary
local features the BMM-FV outperforms the compared aggregation methods, namely
the BoW, the VLAD and the GMM-FV. The performance of the BMM-FV is an
increasing function of the number K of Benoulli mixtures. However, for large K, the
improvement tends to be smaller and the dimensionality of the FV becomes very large
(e.g. 65,536 dimensions using K = 256). Hence, for high values of K, the benefit of
the improved accuracy is not worth the computational overhead (both for the BMM
estimation and for the cost of storage/comparison of FVs).

The PCA reduction of BMM-FV is effective since it can provide a very compact
image signature with just a slight loss in accuracy, as shown in the case of K = 64 (Ta-
ble 5(b)). Dimension reduction does not necessarily reduce the accuracy. Conversely,
limited reduction tend to improve the retrieval performance of the FV representations.

For the computation of VLAD, the k-means results are more effective than k-
majority/k-medoids clustering, since the use of non-binary centroids gives more dis-
criminant information during the computation of the residual vectors used in VLAD.

For the BoW approach, k-means and k-majority performs equally better than k-
medoids. However, the k-majority is preferable in this case because the cost of the
quantization process is significantly reduced by using the Hamming distance, rather
than Euclidean one, for the comparison between centroids and binary local features.

Both BMM-FV and VLAD, with only K = 64, outperform BoW. However, as
happens for non-binary features (see Table 4), the loss in accuracy of BoW represen-
tation is comparatively lower when the variability of the images is limited, as for the
Oxford5k dataset.

As expected, BMM-FV outperforms GMM-FV, since the probability distribu-
tion of binary local features is better described using mixtures of Bernoulli rather
than mixtures of Gaussian. The results of our experiments also show that the use of
BMM-FV is still effective even if compared with the direct matching strategy. In fact,
the retrieval performance of BMM-FV on Oxford5k is just slightly worse than tradi-
tional direct matching of local feature, while on INRIA Holidays the BMM-FV even
outperforms the direct matching result.

For completeness, in Table 4, we also report the results of the same base-line
encodings approaches applied to non-binary features (both full-size SIFT and PCA-
reduced to 64 components) taken from literature [36,37]. As expected, aggregation
methods in general exhibit better performance in combination with SIFT/SIFTPCA
then with ORB, expecially for the Oxford5k dataset. However, it is worth noting that
on the INRIA Holidays the BMM-FV outperforms the BoW on SIFT/SIFTPCA and
reach similar performance of the FV built upon SIFTs.

The FV and VLAD get considerable benefit from performing PCA of SIFT local
descriptors before the aggregation phase as the PCA rotation decorrelate the descrip-
tors components. This suggest that techniques, such as VLAD with k-means and
GMM-FV, which treat binary vectors as real-valued vectors, may also benefit from
the use of PCA before the aggregation phase.
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Fig. 1 Retrieval performance on the INRIA Holidays dataset of the combination of HybridNet fc6 and
various aggregations of ORB binary feature (BMM-FV, VLAD, BoW, and GMM-FV). Only the full-sized
descriptors are considered (i.e., no PCA) and for each aggregation technique we selected the corresponding
best setting (e.g learning method) according with results reported in Table 6. α is the parameter used in
the combination: α = 0 corresponds to use only the aggregated descriptor, while α = 1 correspond to use
only the HybridNet feature.

In conclusion, it is important to point-out that there are several applications where
binary features need to be used to improve efficiency, at the cost of some effective-
ness reduction [29]. We showed that in this case the use of the encodings techniques
represent a valid alternative to the direct matching.

4.4 Combination of CNNs and Aggregations of Binary Local Feature

In this section we evaluate the retrieval performance of the combination of CNN fea-
tures with the aggregations of binary local feature, following the approach described
in Section 3.2. We considered the INRIA Holidays dataset and we used the the output
of the first fully-connected layer (fc6) of the HybridNet [84] model as CNN feature. In
fact, in [13] several experiments on the INRIA Holidays have shown that HybridNet
fc6 achieve better mAP result than other outputs (e.g. pool5, fc6, fc7, fc8) of several
pre-trained CNN models: the OxfordNet [66], the AlexNet [41], the PlacesNet [84]
and the HybridNet itself.

Figure 1 shows the mAP obtained by combining HybridNet fc6 with different ag-
gregations of ORB binary features, namely the BMM-FV, the GMM-FV, the VLAD,
and the BoW. Interestingly, with the exception of the GMM-FV, the retrieval per-
formance obtained after the combination is very similar for the various aggregation
techniques. This, on the one hand confirms that the GMM-FV is not the best choice
for encoding binary features, and on the other hand, since each aggregation technique
computes statistical summaries of the same set of the local descriptors, suggests that
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Table 6 Retrieval performance of various combinations of BMM-FV and HybridNet CNN feature. The
BMM-FV representations were computed for three different binary local features (ORB, LATCH, and
AKAZE) using K = 64 mixtures of Bernoulli. The CNN feature was computed as the output the HybriNet
fc6 layer after applying the ReLU transform. Dim is the number of components of each vector represen-
tation. α is the parameter used in the combination of FV and CNN: α = 0 corresponds to use only FV,
while α = 1 correspond to use only the HybridNet feature. Bold numbers denote maxima in the respective
column.

Method Dim
α

mAP

ORB LATCH AKAZE ORB LATCH AKAZE

BMM-FV (K=64) 16,384 16,384 32,768 0 49.6 46.3 43.7

Combination of
BMM-FV (K=64)

and
HybridNet fc6

20,480 20,480 36,864

0.1 66.4 64.7 59.2
0.2 74.8 73.8 68.7
0.3 77.4 76.8 74.3
0.4 79.1 77.5 77.3
0.5 79.2 78.3 78.0
0.6 79.0 78.5 79.2
0.7 78.7 77.7 78.7
0.8 77.8 76.7 77.5
0.9 76.4 76.3 76.2

HybridNet fc6 4,096 1 75.5

the additional information provided by the various aggregated descriptors helps al-
most equally to improve the retrieval performance of the CNN feature. Thus, in the
following we further investigate combinations of CNNs and the BMM-FV that, even
for a shot, reaches the best performance for all the tested parameter α .

In Table 6 we report the mAP obtained combining the HybridNet fc6 feature
with the BMM-FV computed for three different kind of binary local features, namely
ORB, LATCH and AKAZE, using K = 64 mixtures of Bernoulli. It is worth noting
that all the three BMM-FVs give a similar improvement when combined with the
HybridNet fc6, although they have rather different mAP results (see first row of Table
6) which are substantially lower than that of CNN (last row of Table 6). The intuition
is that the additional information provided by using a specific BMM-FV rather than
using the CNN feature alone, do not depend very much on the used binary feature.

For each tested BMM-FV seems that exist an optimal α to be used in the convex
combination (equation (4)). When ORB binary features were used, the optimal α was
obtained around 0.5, which correspond to give the same importance to both FV and
CNN feature. For the less effective BMM-FVs built upon LATCH and AKAZE, the
optimal α was 0.6, which means that the CNN feature is used with slightly more
importance than BMM-FV during the convex combination.

The use of ORB or AKAZE led to obtain the best performance that was 79.2%
of mAP. This results in a relative improvement of 4.9% respect to the single use
of the CNN feature, that in our case was 75.5%. So we obtain the same relative
improvement of [13] but using a less expensive FV representation. Indeed, in [13] the
fusion of HybridNet fc6 and a FV computed on 64-dimensional PCA-reduced SIFTs,
using K = 256 mixtures of Gaussian, have led to obtain a relative improvement of
4.9% respect to the use of the CNN feature alone (see also Table 8).

However, the cost for integrating traditional FV built upon SIFTs with CNN fea-
tures may be considered too high, especially for systems that need to process image in
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Fig. 2 Retrieval performance of the combinations of BMM-FV and HybridNet fc6 for various number K
of Bernoulli mixtures. The BMM-FVs were computed using ORB binary features. α is the parameter used
in the combination: α = 0 corresponds to use only FV, while α = 1 correspond to use only the HybridNet
feature.

real time. For example, according to [29] and as showed in the table 2, the SIFTs ex-
traction (about 2,000 features per image), the PCA-reduction to D = 64 dimensions,
and the FV aggregation with K = 256 requires more than 1.3 seconds per image,
while the CNN feature extraction is 4 times faster (i.e., about 300 ms per image).
On the other hand, extracting ORB binary features (about 2,000 features per image,
each of dimension D = 256) and aggregating them using a BMM-FV with K = 64
requires less than 190 ms that is in line with the cost of CNN extraction (300 ms). In
our tests, the cost for integrating the already extracted BMM-FV and the CNN fea-
tures was negligible in the search phase, using a sequential scan to search a dataset,
also thanks to the fact that both BMM-FV and CNN features are computed using the
not too costly Euclidean distance.

Since as observed in [47,1] the ORB extraction is faster than LATCH and AKAZE,
in the following we focus just on ORB binary feature. In figure 2 we show the re-
sults obtained by combining HybridNet fc6 with the BMM-FVs obtained using K =
32,64,128. We observed that the performance of the CNN feature is improved also
when it is combined with the less effective BMM-FV built using K = 32 Bernoulli.
The BMM-FV with K = 128 achieve the best effectiveness (mAP of 79.5%) for
α = 0.4. However, since the cost for computing and storing FV increase with the
number K of Bernoulli, the improvement obtained using K = 128 respect to that of
K = 64 doesn’t worth the extra cost of using a bigger value of K.

The BMM-FV with K = 64 is still high dimensional, so to reduce the cost of
storing and comparing FV, we also evaluated the combination after the PCA dimen-
sionality reduction. As already observed, limited dimensionality reduction tends to
improve the accuracy of the single FV representation. In fact, the BMM-FV with
K = 64 achieved a mAP of 52.6% when reduced from 16,384 to 4,096 dimensions.
However, as shown in Table 7 and Table 8, when the PCA-reduced version of the
BMM-FV was combined with HybriNet fc6, the overall relative improvement in mAP
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Table 7 Comparison of the results obtained combining HybridNet fc6 feature with the full-sized and the
PCA-reduced version of the BMM-FV. The BMM-FV was computed on ORB binary feature using K = 64
mixtures of Bernoulli. Dim is the number of components of each vector representation. α is the parameter
used in the combination of FV and CNN. Bold numbers denote maxima in the respective column.

Method Dim
α

mAP

FV full dim FV PCA-
reduced

FV full dim FV PCA-
reduced

BMM-FV (K=64) 16,384 4,096 0 49.6 52.6

Combination of
BMM-FV (K=64)

and
HybridNet fc6

20,480 8,192

0.1 66.4 66.3
0.2 74.8 73.9
0.3 77.4 77.3
0.4 79.1 78.5
0.5 79.2 78.4
0.6 79.0 78.5
0.7 78.7 78.1
0.8 77.8 77.7
0.9 76.4 76.4

HybridNet fc6 4,096 1 75.5

Table 8 Relative mAP improvement obtained after combining FV with HybridNet fc6. Each
relative improvements was computed respect to the use of the CNN feature alone, that is:(
mAPafter combination−mAPHybridNet fc6

)
/mAPHybridNet fc6. The relative improvements obtained using the

FV computed on 64-dimensional PCA-reduced SIFTs (SIFTPCA64) was computed according to the re-
sults reported in [13].

FV
method

Local
Feature K dim Relative

improvement

BMM-FV ORB 128 32,768 5.2
BMM-FV ORB 64 16,384 4.9
BMM-FV AKAZE 64 32,768 4.9
BMM-FV LATCH 64 16,384 4.0
BMM-FV+ PCA ORB 64 4,096 3.9
BMM-FV ORB 32 8,192 3.5

FV[13] SIFTPCA64 256 32,768 4.9

was 3.9%, which is less than that obtained using the full-sized BMM-FV. These result
is not surprising given that after the dimensionality reduction we may have a loss of
the additional information provided by the FV representation during the combination
with the CNN feature.

Finally, in Table 8 we summarizes the relative improvement achieved by combin-
ing BMM-FV and HybriNet fc6, and we compare the obtained results with the relative
improvement achieved in [13], where the more expensive FV built upon SIFTs was
used. We observed that BMM-FV led to achieve similar or even better relative im-
provements with an evident advantage from the computational point of view, because
it uses binary local features.

4.5 Large-Scale Experiments

In order to evaluate the behavior of feature combinations on a large scale, we have
used a set of up to one million images. More precisely, as in [33], we merged the
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Table 9 Comparison of the results obtained combining HybridNet fc6 feature and BMM-FV on the
INRIA Holidays dataset with the distractor dataset MIRFlickr-1M. The results related to the INRIA
Holidays alone are reported from Table 7 for reference. The BMM-FV was computed on ORB bi-
nary feature using K = 64 mixtures of Bernoulli; both full-sized and the PCA-reduced features are
considered. Dim is the number of components of each vector representation. α is the parameter used
in the combination of FV and CNN. Bold numbers denote maxima in the respective column. The
last row reports the maximum relative mAP improvement obtained after combining FV with Hybrid-
Net fc6; relative improvements are computed respect to the use of the CNN feature alone, that is(
mAPafter combination−mAPHybridNet fc6

)
/mAPHybridNet fc6.

Method
Dim

α

mAP

FV full
dim

FV PCA-
reduced

FV full dim FV PCA-reduced

Holi
da

ys

Holi
da

ys
+

M
IR

Flic
kr

Holi
da

ys

Holi
da

ys
+

M
IR

Flic
kr

BMM-FV (K=64) 16,384 16,384 0 49.6 31.0 52.6 34.9

Combination of
BMM-FV (K=64)

and
HybridNet fc6

20,480 8,192 0.1 66.4 47.0 66.3 50.7
0.2 74.8 59.3 73.9 61.9
0.3 77.4 64.0 77.3 65.6
0.4 79.1 67.1 78.5 67.2
0.5 79.2 66.5 78.4 66.9
0.6 79.0 65.7 78.5 65.7
0.7 78.7 64.4 78.1 64.4
0.8 77.8 62.5 77.7 62.8
0.9 76.4 60.7 76.4 60.8

HybridNet fc6 4,096 1 75.5 59.1 75.5 59.1

Maximum relative mAP improvement→ 4.9% 13.4% 4.0% 13.7%

INRIA Holidays dataset with a public large-scale dataset (MIRFlickr-1M [31]) used
as distraction set; the mAP was measured using the Holidays ground-truth.

Table 9 reports results obtained using both the BMM-FV alone and the combina-
tions with the HybridNet fc6 CNN feature. Given the results reported in the previous
section we focus on the BMM-FV encoding of ORB binary features. All the fea-
ture combinations show an improvement with respect to the single use of the CNN
feature (mAP of 59.1%) or BMM-FV (mAP of 31.0%/34.9% respectively using the
full length/PCA-reduced descriptor). This reflects the very good behavior of feature
combinations also in the large-scale case.

The mAP reaches a maximum using α between 0.4 and 0.5, that is giving (quite)
the same weight to BMM-FV and CNN feature during the combination. The results
obtained using the full length BMM-FV and the PCA-reduced version are similar.
The latter performs slightly better and achieved a maximum of 67.2% of mAP that
correspond to 13.7% of relative mAP improvement respect to use the CNN feature
alone. It is worth noting that the relative mAP improvement obtained in the large-
scale setting is much greater than that obtained without the distraction set. This sug-
gests that the information provided by the BMM-FV during the combination helps in
discerning the visual content of images particularly in presence of distractor images.

Since the computational time of extracting binary features is much faster than
others, the computational gain of combining CNN features with BMM-FV encodings
of ORB over traditional FV encodings of SIFT is especially notable in the large-scale
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scenario. For example, the process for extracting SIFTs from the INRIA Holidays+
MIRFlickr dataset (1,001,491 images) would have required more than 13 days (about
1,200 ms per image) while ORB extraction took less than 8 hours (about 26 ms per
image).

5 Conclusion

Motivated by recent results obtained on one hand with the use of aggregation meth-
ods applied to local descriptors, and on the other with the definition of binary local
features, this paper has performed an extensive comparisons of techniques that mix
the two approaches by using aggregation methods on binary local features. The use of
aggregation methods on binary local features is motivated by the need for increasing
efficiency and reducing computing resources for image matching on a large scale, at
the expense of some degradation in the accuracy of retrieval algorithms. Combining
the two approaches lead to execute image retrieval on a very large scale and reduce
the cost for feature extraction and representation. Thus we expect that the results of
our empirical evaluation are useful for people working with binary local descriptors.

Moreover, we investigated how aggregations of binary local features work in con-
junction with the CNN pipeline in order to improve the latter retrieval performance.
We showed that the BMM-FV built upon ORB binary features can be profitable use
to this scope, even if a relative small number of Bernoulli is used. In fact, the relative
improvement in the retrieval performance obtained combining CNN features with the
BMM-FV is similar to that previously obtained in [13] where a combination of the
CNN features with the more expensive FV built on SIFT was proposed. Experimental
evaluation on large scale confirms the effectiveness and scalability of our proposal.

It is also worth mentioning that the BMM-FV approach is very general and could
be applied to any binary feature. Recent works based on CNNs suggest that binary
features aggregation technique could be further applied to deep features. In fact, on
one hand, local features based on CNNs, aggregated with VLAD and FV approaches,
have been proposed to obtain robustness to geometric deformations [80,75]. On the
other hand, binarization of global CNN features have been also proposed in [48,42].
Thus, as a future work, we plan to test the BMM-FV approach over binary deep local
descriptors leveraging on the local and binary approaches mentioned above.
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56. Perronnin, F., Liu, Y., Sànchez, J., Poirier, H.: Large-scale image retrieval with compressed fisher
vectors. In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 3384–
3391 (2010). DOI 10.1109/CVPR.2010.5540009
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A Score vector computation

In the following, we have reported the computation of the score function GX
λ

, defined as the gradient of the
log-likelihood of a data X with respect to the parameters λ of a Bernoulli Mixture Model. Throughout this
appendix we have used [[·]] notation to represent the Iverson bracket which equals one if the arguments is
true, and zero otherwise.

Under the independence assumption, the Fisher score with respect to the generic parameter λk is ex-

pressed as: GX
λk
=∑

T
t=1

∂ log p(xt |λ )
∂λk

=∑
T
t=1

1
p(xt |λ )

∂

∂λk

[
∑

K
i=1 wi pi(xt)

]
. To compute

∂

∂λk

[
∑

K
i=1 wi pi(xt)

]
,

https://hal.inria.fr/hal-00840721
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we first observe that

∂wi

∂αk
=

∂

∂αk

[
exp(αi)

∑
K
j=1 exp(α j)

]

=
exp(αk)

(
∑

K
j=1 exp(α j)

)
[[i = k]]− exp(αi)exp(αk)(

∑
K
j=1 exp(α j)

)2

= wk[[i = k]]−wkwi

(5)

and

∂ pi(xt)

∂ µkd
=

∂

∂ µkd

[
D

∏
l=1

µ
xtl
kl (1−µkl)

1−xtl

]
[[i = k]]

= ([[xtd = 1]]− [[xtd = 0]])

 D

∏
l=1
l 6=d

µ
xtl
kl (1−µkl)

1−xtl

 [[i = k]]

= ([[xtd = 1]]− [[xtd = 0]])

(
pk(xt)

µ
xtd
kd (1−µkd)

1−xtd

)
[[i = k]]

= pk(xt)

(
(1−µkd)[[xtd = 1]]−µkd [[xtd = 0]]

µkd(1−µkd)

)
[[i = k]]

= pk(xt)

(
xtd −µkd

µkd(1−µkd)

)
[[i = k]].

(6)

Hence, the Fisher score with respect to the parameter αk is obtained as

GX
αk

=
T

∑
t=1

K

∑
i=1

pi(xt)

p(xt |λ )
∂wi

∂αk

(5)
=

T

∑
t=1

K

∑
i=1

pi(xt)

p(xt |λ )
wk ([[i = k]]−wi)

=
T

∑
t=1

(
pk(xt)

p(xt |λ )
wk−

K

∑
i=1

pi(xt)

p(xt |λ )
wkwi

)
=

T

∑
t=1

(
γt(k)−wk

K

∑
i=1

γt(i)

)

=
T

∑
t=1

(γt(k)−wk)

(7)

and the Fisher score related to the parameter µkd is

GX
µkd

=
T

∑
t=1

∂ log p(xt |λ )
∂ µkd

=
T

∑
t=1

1
p(xt |λ )

∂

∂ µkd

[
K

∑
i=1

wi pi(xt)

]

=
T

∑
t=1

wk

p(xt |λ )
∂ pk(xt)

∂ µkd

(6)
=

T

∑
t=1

wk pk(xt)

p(xt |λ )

(
xtd −µkd

µkd(1−µkd)

)

=
T

∑
t=1

γt(k)
(

xtd −µkd

µkd(1−µkd)

)
.

(8)

B Approximation of the Fisher Information Matrix

Our derivation of the FIM is based on the assumption (see also [56,63]) that for each observation x =
(x1, . . . ,xD) ∈ {0,1}D the distribution of the occupancy probability γ(·) = p(·|x,λ ) is sharply peaking, i.e.
there is one Bernoulli index k such that γx(k)≈ 1 and ∀ i 6= k, γx(i)≈ 0. This assumption implies that

γx(k)γx(i)≈ 0 ∀k, i = 1 . . . ,K, i 6= k

γx(k)2 ≈ γx(k) ∀k = 1, . . . ,K
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and then
γx(k)γx(i)≈ γx(k)[[i = k]], (9)

where [[·]] is the Iverson bracket.
The elements of the FIM are defined as:

[Fλ ]i, j = Ex∼p(·|λ )

[(
∂ log p(x|λ )

∂λi

)(
∂ log p(x|λ )

∂λ j

)]
. (10)

Hence, the FIM Fλ is symmetric and can be written as block matrix

Fλ =

[
Fα,α Fµ,α

F>µ,α Fµ,µ

]
.

By using the definition of the occupancy probability (i.e. γx(k) = wk pk(x)/p(x|λ )) and the fact that pk is
the distribution of a D-dimensional Bernoulli of mean µk , we have the following useful equalities:

Ex∼p(·|λ ) [γx(k)] = ∑
x∈{0,1}D

γx(k)p(x|λ )=wk (11)

Ex∼p(·|λ ) [γx(k)xd ]=wkµkd (12)

Ex∼p(·|λ ) [γx(k)xdxl ]=wkµkd (µkl [[d 6= l]]+ [[d = l]]) (13)

Ex∼p(·|λ )

[
∂ log p(x|λ )

∂αk

]
(7)
= Ex∼p(·|λ ) [γx(k)−wk]=0 (14)

Ex∼p(·|λ )

[
∂ log p(x|λ )

∂ µid

]
(8)
= Ex∼p(·|λ )

[
γx(k)(xd −µkd)

µkd(1−µkd)

]
=0. (15)

It follows that Fλ may approximated by a diagonal block matrix, because the mixing blocks Fµkd ,αi are
close to the zero matrix:

Fµkd ,αi = Ex∼p(·|λ )

[(
∂ log p(x|λ )

∂ µkd

)(
∂ log p(x|λ )

∂αi

)]
(7)−(8)
= Ex∼p(·|λ )

[
γx(k)

(xd −µkd)

µkd(1−µkd)
(γx(i)−wi)

]
(9)
≈ Ex∼p(·|λ )

[
γx(k)(xd −µkd)

µkd(1−µkd)

]
([[i = k]]−wi)

(15)
= 0.

The block Fµ,µ can be written as KD×KD diagonal matrix, in fact:

Fµid ,µkl
(10)
= E

[(
∂ log p(x|λ )

∂ µid

)(
∂ log p(x|λ )

∂ µkl

)]
(8)
= Ex∼p(·|λ )

[
γx(i)γx(k)

(xd −µid)

µid(1−µid)

(xl −µkl)

µkl(1−µkl)

]
(9)
≈ Ex∼p(·|λ )

[
γx(k)(xd −µkd)(xl −µkl)

µkd µkl(1−µkd)(1−µkl)

]
[[i = k]]

(11)−(13)
=

wk(µkd µkl [[d 6= l]]+µkl [[d = l]]−µkd µkl)

µkd µkl(1−µkd)(1−µkl)
[[i = k]]

=
wk(µkd [[d 6= l]]+ [[d = l]]−µkd)

µkd(1−µkd)(1−µkl)
[[i = k]]

=
wk

µkd(1−µkd)
[[i = k]][[d = l]].

(16)

The relation (16) points that the diagonal elements of our FIM approximation are wk/µkd(1− µkd) and
the corresponding entries in Lλ (i.e. the square root of the inverse of FIM) equal

√
µkd(1−µkd)/wk . The
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block related to the α parameters is Fα,α = (diag(w)−ww>) where w = [w1, . . . ,wK ]
>, in fact:

Fαk ,αi
(10)
= Ex∼p(·|λ )

[(
∂ log p(x|λ )

∂αk

)(
∂ log p(x|λ )

∂αi

)]
(7)
= Ex∼p(·|λ ) [(γx(k)−wk)(γx(i)−wi)]

(9)
≈ Ep(·|λ ) [γx(k)[[i = k]]− γx(k)wi− γx(i)wk +wiwk]

(11)−(12)
= (wk[[i = k]]−wiwk) .

The matrix Fα,α is not invertible (indeed Fα,α e = 0 where e = [1, . . . ,1]>) due to the dependence of the
mixing weights (∑K

i=1 αi = ∑
K
i=1 wi = 1). Since there are only K − 1 degrees of freedom in the mixing

weight, as proposed in [63], we can fix αK equal to a constant without loss of generality and work with a
reduced set of K−1 parameters: α̃ = [α1, . . . ,αK−1]

>.
Taking into account the Fisher score with respect to α̃ , i.e.

GX
α̃ = ∇α̃ log p(X |λ ) = [GX

α1
, . . . ,GX

αK−1
]> = G̃X

α ,

the corresponding block of the FIM is Fα̃,α̃ = (diag(w̃)− w̃w̃>), where w̃ = [w1, . . . ,wK−1]
>. The matrix

Fα̃,α̃ is invertible, indeed it can be decomposed into a product of an invertible diagonal matrix D = diag(w̃)
and an invertible elementary matrix 8 E(e, w̃,−1) = I− ew̃>; its inverse is

F−1
α̃,α̃ = diag(w̃)−1

(
I +

1

∑
K−1
i=1 wi−1

ew̃>
)

=

(
diag(w̃)−1 +

1
wK

ee>
)
.

It follows that

Kα̃ (X ,Y ) = (GX
α̃ )
>F−1

α̃,α̃ GY
α̃ =

(
(GX

α̃ )
>diag(w̃)−1GY

α̃ +
1

wK
(e>GX

α̃ )(e
>GY

α̃ )

)
=

K

∑
k=1

GX
αk

GY
αk

wk

where we used e>GZ
α̃
= ∑

K−1
k=1 ∑z∈Z (γz(k)−wk) =−∑z∈Z (γz(K)−wK) =−GZ

αK
.

By defining G X
αk

=
1
√

wk
∑x∈X (γx(k)−wk) , we finally obtain Kα̃ (X ,Y ) =

(
G X

α

)>
G Y

α . Please note that we

don’t need to explicitly compute the Cholesky decomposition of the matrix F−1
α̃,α̃ because the Fisher Kernel

Kα̃ (X ,Y ) can be easily rewritten as dot product between the feature vector G X
α and G Y

α .

8 An elementary matrix E(u,v,σ) = I−σuvH is non-singular if and only if σvH u 6= 1 and in this case
the inverse is E(u,v,σ)−1 = E(u,v,τ) where τ = σ/(σvH u−1). More details on this topic can be found
in [30].
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