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Abstract This paper employs case-based reasoning (CBR) to capture the per-
sonal styles of individual artists and generate the human facial portraits from pho-
tos accordingly. For each human artist to be mimicked, a series of cases are firstly
built-up from her/his exemplars of source facial photo and hand-drawn sketch,
and then its stylization for facial photo is transformed as a style-transferring pro-
cess of iterative refinement by looking-for and applying best-fit cases in a sense of
style optimization. Two models, fitness evaluation model and parameter estima-
tion model, are learned for case retrieval and adaptation respectively from these
cases. The fitness evaluation model is to decide which case is best-fitted to the
sketching of current interest, and the parameter estimation model is to automate
case adaptation. The resultant sketch is synthesized progressively with an iterative
loop of retrieval and adaptation of candidate cases until the desired aesthetic style
is achieved. To explore the effectiveness and advantages of the novel approach, we
experimentally compare the sketch portraits generated by the proposed method
with that of a state-of-the-art example-based facial sketch generation algorithm as
well as a couple commercial software packages. The comparisons reveal that our
CBR based synthesis method for facial portraits is superior both in capturing and
reproducing artists’ personal illustration styles to the peer methods.

Keywords Learning to sketch human facial portraits, modeling personal
sketch illustration styles for facial portraits, example-based learning and sketch
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Fig. 1 Comparison between facial portraits in sketching generated by two commercial soft-
ware packages (Akvis Sketch [2] and a plug-in for Microsoft Outlook 2003 [26]), two human
artists, and our method mimicking the illustration styles of the two artists respectively. In this
experiment, our method first learns the personal sketching styles of the two human artists and
then generates the sketch portraits for the same input facial photo using the two captured
illustration styles respectively.

generation, style-transferring for artistic rendering, personalized exaggeration,
case-based reasoning

1 Introduction

Image-based artistic rendering (IB-AR) algorithms often rely on manually-encoded
heuristics to emulate specific artistic illustration styles [17]. These heuristics can
be classified into three categories [17]: stroke-based rendering for image approxi-
mation [24], region-based techniques [49], and image processing (filtering) [32] [31].
However, it is difficult for artist to explicitly depict the rules of artistic illustration
because these rules are often subconsciously exercised and are not always express-
ible verbally or symbolically. Therefore, example-based artistic rendering (EBAR)
is proposed to generate stylized sketch, which is more popular and more effective
since the styles are implicitly embodied in the examples, as it is natural to specify
artistic styles by showing a set of examples [10].

Existing EBAR methods can be broadly classified as model-based and model-
free methods. The model-based methods embed prior knowledge about artistic
rendering styles into generative models that carry a set of process control param-
eters. For example, Lu et al. [23] built-up parametric histogram models on the
tone distribution inside the sketch example. The resultant sketch was then gen-
erated via tone-adjusting by this model according to the tone map in the source
image. Tu et al. [42] learned novel direct combined models from the joint distri-
butions of the feature vector pairs of input facial image vs neutral facial shape,
neutral vs exaggerated facial shape, and facial sketch vs combination of input
facial image and exaggerated facial shape, and then the system optimally syn-
thesized the corresponding output sketch by applying the MMSE criterion [47]
within the combined eigenspace. The model-free methods synthesize the resul-
tant style-preserving illustrations directly by the correlation relationship between
pixels, patches, or strokes etc., in the exemplars. Wang et al. [45] divided facial
region into overlapping patches from the source photo, and for each patch, located
a similar photo patch from examples and collected its corresponding sketch for
the synthesis of the resultant sketch smoothly. Zhao et al. [50] built a dictionary
of stroke templates of oil painting portrait with complete information of artists’
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stroke-by-stroke drawing processes. Their method painterly rendered new portrait
by reusing brush strokes from a matched template in the dictionary in terms of
facial shape and color in the source image. Model-based methods can generate
diverse new illustrations with parametric styles through generalization on exem-
plars. However subtle and unique artistic characteristics related to individual artist
are somewhat lost while modelling the stylization. Model-free methods naturally
incorporate the visual correlation in examples into the resultant sketch. But the
richness of resulting sketches are usually limited by that in the given examples.

In the community of artificial intelligence, case-based reasoning (CBR) solves
a new problem instance by first recalling one or multiple similar, previously solved
problem instances and then reapplying the known solutions, often with adaptations
according to the new context, to address the new problem instance [1]. From the
point of the view of problem solving, the exemplars, a photo and its corresponding
artistic illustration, in EBAR are very similar to the cases in CBR. This motivates
us to employ case-based reasoning to generate the stylized human facial portraits
for an individual artist. Fig. 1 shows two facial sketches automatically created by
us using the styles learned from two artists respectively. Sketches generated by
two commercial software packages are also presented for comparison.

From a technical perspective, the major challenges for CBR-based stylization
of portrait lie in case retrieval and adaptation respectively. Case retrieval in styl-
ization is complex, and goes beyond selecting a best example for a given input
as that in [45], because portrait sketching practice of human artists is usually a
multi-step and progressive painting process, in which the case retrieval may occur
in multiple steps, accounting for not only the given input, but also the current
interim sketch and the desired resulting sketch in his/her mind. However, during
the phase of looking for the suitable cases, the expected resultant sketch is not
available yet for the time being. Case adaptation for stylization is to transfer the
style-related correlations in the selected cases into the current sketching. Although
existing style-transferring approaches [42] [45] [50] can be utilized, its key-point
is how to automate the case adaptation for stylization, especially when multiple
cases are applicable, since automatic case adaptation is necessary to enable CBR
systems to function autonomously and to serve naive as well as expert users [18].

We address these challenges with an approach specific to personalized styl-
ization for sketching faces. First, we designed an iterative pipeline as an overall
algorithmic mechanism for CBR-based stylization, in which the current sketch is
refined iteratively by the best-fit case until the desired sketch appears. Second,
motivated by human artists practice of forming a desired sketch in mind before
drawing, we train-up a predictive model from cases for each artist to hypothetically
create them. The model evaluates the fitness of each candidate case in terms of the
visual similarity to the presumed ”resultant sketch”. The best-fit one is selected
to sketch current face. Furthermore, in order to automate the case adaptation, a
parameter estimation model is learned for each artist in advance, which will auto-
matically assign the appropriate values to parameters for case adaptation, while
getting a new case for refinement of resulting sketch.

To summarize, our paper makes the following contributions:

– A novel case-based reasoning algorithmic pipeline to iteratively stylize the hu-
man portraits by exemplars, producing rich portraits and preserving personal
styles well.
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– A predictive framework integrated with generate-and-evaluate mechanism is
newly proposed for best-fit case retrieval with capability of hypothetically cre-
ating the desired sketch in the mind of artist, which greatly facilitate the eval-
uation of best-fit cases.

– Innovatively learning parameter estimation model for each artist which enables
an automatic case adaptation for stylized sketching of facial photo.

2 Related Work

A multitude of image-based artistic rendering (IB-AR) techniques have been pro-
posed. Kyprianidis et al. [17] gave an in depth survey of IB-AR techniques. Here we
merely focus on example-based artistic rendering (EBAR), which can be roughly
categorized into two classes: model-based and model-free methods.

Model-based methods acquire prior knowledge of artistic rendering styles from
examples and accordingly built-up the stylization models. Besides the model-based
approaches in [23] [42] (see Section 1), Reinhard et al. [35] modeled color style of a
source image through the means and standard deviations along each of the three
axes in lαβ color space, and then imposed the means and standard deviations
onto the target image, transferring the color style to target image. Liang et al. [21]
models facial pexaggeration style through analyzing the correlation between the
image caricature pairs using partial least-squares (PLS). The model-based hatch-
ing in [14] trained a mapping from the features of input 3D object to hatching
properties. A new illustration was generated in target style according to predicted
properties. The aforementioned model-based methods can generate diverse new
illustrations with parametric styles through generalization on exemplars. However
subtle and unique artistic characteristics related to individual artist are somewhat
lost while modelling the stylization.

Model-free methods generate new artistic illustrations directly by reusing the
correlation relationship provided by all exemplars. Hertzmann et al. [13] proposed
image analogies algorithm which reuse a source image A and artistic depiction
of that image A’ to synthesize an artistic illustration B’ for a new image B in
pixel level. Each new pixel is synthesized by reusing the pixel in exemplar that
best matches the pixel being synthesized. Later, an extension of this algorithm
incorporated image gradient direction to better preserve object shape of the target
image [19]. Example-based stippling [15] proposed a texture similarity metric based
on gray-level co-occurrence matrix, aiming at generating stipple textures that are
perceptually close to input samples. Their reuse of examples merely accounted
for pixels related to stipple primitives. Besides pixel-level reusing of examples,
patch-level reusing are also proposed, which often divide original image exemplars
into patch exemplars [45]. Liu et al. [22] took the similar approach in [45], and
retrieved multiple exemplars for each photo patch of a new face and synthesize a
sketch patch by linearly blending sketch patched in the candidate exemplars. Wang
et al. [44] improved this approach by defining a probabilistic model to optimize
both the reconstruction fidelity of the input photo and the synthesis fidelity of
the target output sketch. Song et al. [39] further extended it through a Spatial
Sketch Denoising method. Moreover, the face image can also be decomposed into
patches in terms of anatomical structure of human face as that in [10] [46] [28] [48].
However, the style of a rendition is mainly embodied in the stokes of a sketch,
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Fig. 2 System overview. Feature points on images are represented by yellow dots.

Fig. 3 Facial feature points and their corresponding color-coded facial regions.

instead of pixels or patches in an image. Therefore stroke-based reusing in EBAR
are also investigated [50]. Berger et al. [5] presented an approach which reuse real
artists’ strokes to the image. To retain specific styles, they composed a stroke
library for each artist, and ”cloned” the relevant strokes that matched to the
detected edges in the source image.

3 Method Overview

Fig. 2 gives an overview of our CBR-based sketch synthesis framework that pro-
duces visually superior results than existing synthesis methods. Given exemplars
of source facial photo and stylized sketch hand-drawn by a human artist, its pre-
processing phase for case-based reasoning proceeds in three steps: 1) we generate
sketch Synthesis (STS) cases and construct a library for them; 2) Fitness Evalua-
tion (FE) models for the artist are trained up from the STS cases; 3) Parameter
Estimation (PE) models are learned for automatic case adaptation. During the
runtime phase, we use STS cases, FE models, and PE models to iteratively syn-
thesize a new facial sketch via CBR for each newly given facial photo.
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The best-fit case retrieval is carried out by a predictive framework of generate-
and-evaluate mechanism. From the point of view of style imitation, best-fit case
should be the one that maximally preserves the human artist’s style in resulting
sketch. However, the resulting sketch is to-be-generated, and sketch is not at-
hand yet, which arises the problem of unknown ”ground truth”. Our solution is to
hypothesize there is always a ground truth in the mind of a human artist, while
drawing the sketch. In fact a human artist can easily select the best-fit case by
the desired sketch in his/her mind. Therefore we propose a predictive framework
embedded with generate-and-evaluate mechanism, in which each candidate case is
implicitly applied on the sketch of current interest. FE model is trained to rank
its fitness in terms of the similarity between the optimally generated sketch and
the one mentally imagined in human artist’s mind.

Our case adaptation for sketch synthesis is implemented through a blending
operator, whose parameter setting should maximize the similarity between gen-
erated sketch and its hypothesized groundtruth. An explicit parameter searching
for optimization is time-consuming, therefore we learn a PE model to automati-
cally configure the blending parameter, i.e. to generate a new sketch, we blend the
stylized sketch from the best-fit case and the sketch of current interest with the
parameter assigned by PE model automatically.

During the phase of iteratively synthesis, we firstly segment the entire facial
region into multiple regions according to the anatomical structure of a human face
(see Fig. 3 for facial regions painted with different colors). Then for each segmented
region, the resultant sketch is synthesized progressively with an iterative loop of
retrieval and adaptation of candidate cases until the desired aesthetic style is
achieved. This is motivated by the human artist’s multi-step, progressive portrait
sketching practice. FE model guides case retrieval, while PE model automates case
adaptation. At last, the overall sketch for the entire human face is composed and
formed globally from sketches of these local facial regions according to the relative
spatial layout based on facial feature points.

Moreover, a significant characteristics of facial sketch is exaggeration. With
our CBR’s framework, simulation of the exaggeration is easily embedded as a
post-processing step. After our iterative synthesis process, the exaggeration field
is generated from STS cases, and then applied on the synthesized sketch to imitate
exaggeration style of a human artist.

4 Building up Cases

To build up STS cases (see Fig. 4), we start from a set of paired source photo
and its corresponding stylized sketch, Πl = {(I1, S1), (I2, S2), · · · , (Ii, Si), · · · },
where (Ii, Si) is the i-th sample composed of a front-view facial photo Ii and its
corresponding stylized sketch Si. All sketches in Πl are illustrated using the same
style l as denoted by its subscript. The cardinality of Πl, |Πl|, is the number of
sample pairs inside it.

A STS case consists of 6 components: source photo Ii, stylized sketch Si, neutral
sketch S′i, exaggeration field Vi, and two feature point sets, Q(Ii) and Q(Si), of
Ii and Si respectively. Each source photo merely has one human face in front
view. Stylized sketch is hand-drawn by human artist. Neutral sketch is the one
neutralized by removing the exaggeration from the stylized sketch. Neutral sketch
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Fig. 4 Pipeline of building up cases. Feature points on images are represented by yellow dots.

will be identical to stylized sketch if there is no exaggeration in it. Exaggeration
field is a 2D vector field representing the displacement of relevant pixels due to
exaggeration. Each feature point set has 67 pre-defined points (see Fig. 3). One is
from source photo, and the other one is from stylized sketch. Formally, we denote
a STS case ri as:

ri = (Ii, Si, S
′
i, Vi, Q(Ii), Q(Si)). (1)

A well-established practice of representing the geometry of a facial image is
based on the spatial layout of facial feature points. By this principle, the geom-
etry of Ii and Si are respectively represented by Q(Ii) and Q(Si). Q(Ii) is a set
of 67 pre-defined facial feature points extracted from Ii (see Fig. 3) by the ac-
tive shape model (ASM) [27]. Each feature point is uniquely assigned to one of
the nine aforementioned facial regions. Similarly, Q(Si) is a set of feature points
extracted from Si, which are also detected by ASM [27]. The index numbers of
feature points in the two sets Q(Ii) and Q(Si) as the same. That is, points with
the same index number presumably depict the same location on a face, assuming a
perfect positional alignment between Ii and Si. However, facial elements sketched
by artists sometimes deform geometrically and/or positionally from their coun-
terparts in the corresponding facial photo, partly due to exaggeration. To get the
correct matching between them, manual adjustment is often required.

More details about exaggeration field, features, and neutral sketch are given
below.

4.1 Exaggeration Field

Exaggeration field (EF) is a matrix of two-dimensional vectors. The dimension of
the matrix is the same as the size of the EF’s corresponding image. Each pixel
in the image has a counterpart two-dimensional vector that represents the pixel’s
horizontal and vertical displacements from its position in the neutral sketch to the
corresponding position in the deformed sketch with exaggeration.

The EF representing the exaggeration in Si is denoted as Vi. To generate Vi, the
positions of feature points in Q(Si) and Q(Ii) are aligned, and the geometric image
transformation from Ii to Si is computed by the image deformation algorithm
based on Moving Least Squares (MLS) [36]. The user can also manually modulate
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the transformation if needed. In MLS algorithm, a denser set of displacement
vectors Vi are interpolated by the translations between feature points Q(Ii) and
Q(Si). In our prototype implementation, 50000 two-dimensional vectors will be
derived in an EF for an image of 200 by 250 pixels.

4.2 Features

Given a facial image (sketch or photo) and its feature points, each pixel in the
image inside the outline of facial feature points and the facial image is segmented
into nine regions by its nearest pre-defined facial feature point by the L2 distance.
Let φi be one of the nine facial regions in Ii; ψi be φi’s corresponding area in
S′i; region(·) be a region identification function whose input and output are a
facial region and an index representing region type respectively. Without loss of
generation, let φi be the 1st facial region in Ii, which means region(φi) = 1. We
denote Q(φi) and Q(ψi) as the feature point sets of φi and ψi respectively.

Let τττphoto(φi, Q(φi)) be a vector of features for φi, which includes four types
of features, i.e. τττphoto(φi, Q(φi)) =

(
τττ surf(φi), τττgray(φi), τττdir(φi), τττcontext(Q(φi))

)
.

Similarly, we extract a set of features for characterizing ψi, i.e. τττ sketch(ψi, Q(ψi)).
The features used to characterize photo region φi are:

– The feature vector τττ surf(φi) is a SURF descriptor [3]. For a photo patch φi, we
extract a 64 dimensional SURF feature vector to describe the distribution of
Haar-wavelet responses in the photo patch.

– The feature vector τττgray(φi) is a normalized histogram on the gray value of
pixels in φi. We empirically set the histogram dimension to 32 in our imple-
mentation.

– The feature vector τττdir(φi) is a normalized histogram on the gradient directions
of pixels in φi where the gradient direction of each pixel is calculated using the
Sobel operator [40]. We also empirically set the histogram dimension to 32.

– The feature vector τττcontext(Q(φi)) is composed of simplified shape context de-
scriptors [4], which is a log-polar histogram of the coordinates of the remaining
points measured using a reference point as the origin. Before generating shape
context descriptors, we sample the outline of Q(φi) with uniform spacing, re-
sulting in 100 vertices. Then, for each feature point in Q(φi), a shape context
descriptor is computed with 1 and 8 bins for log r and θ respectively. Therefore,
the dimensionality of τττcontext(φi) is 8|Q(φi)|.

These features depict the high-level visual characteristics because exaggerated
sketch illustrations usually focus more on the salient visual features of an object
or scene [29] rather than the details.

4.3 Neutral Sketch

To generate the neutral sketch, we also use MLS algorithm to derive the geometric
image transformation from Si to Ii, which is similar with the method introduced
in Sec 4.1. By applying this transformation to Si, we manage to remove the exag-
geration from the sample sketch illustration Si, resulting in an neutral sketch S′i.
As a byproduct, the method also produces the new positions of the 67 pre-defined
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Artist illustrated
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Fig. 5 Two instances of the recovered sketches after removing exaggeration.

facial feature points in S′i, which are denoted by a new feature point set Q(S′i).
Fig. 5 shows two restored sketches from the stylized facial portraits.

5 Fitness Evaluation Model for Case Retrieval

In case retrieval, the fitness is evaluated in terms of the visual similarity between
the generated sketch and the groundtruth sketch for the same input facial photo
illustrated by the target human artist. The metric for visual similarity assessment is
based on the normalized mutual information [30], partly due to mutual information
neither depends on any assumption of the data [41] nor requires the extraction of
additional features, such as edges and corners, a process of which may introduce
additional geometrical errors [25].

For each facial region, we train one FE model. Let the FE model trained for the
1st facial region be f1

FE. Its output is fitness quality θx,i between a case ri from our
case set and a case rx which could be another case in our case set or a new case.
Its input is a composite feature vector computed from ri and rx which is defined
as (τττphoto(φx, Q(φx)), τττphoto(φi, Q(φi)), τττ sketch(ψx, Q(ψx))). Then we have

θx,i = f1
FE(τττphoto(φx, Q(φx)), τττphoto(φi, Q(φi)), τττ sketch(ψx, Q(ψx))). (2)

5.1 Training Data Generation

To generate training data for f1
FE, we start from a case setR = {ri|i = 1, 2, · · · , |Πl|},

which is randomly divided into 10 equal-sized sub-sets {Rk|k = 1, 2, · · · , 10}.
Sketches in one of the sub-sets will be used as the ground truth while the re-
maining 9 sub-sets are used to generate the sketch results, which will then be
cross-validated using the groundtruth sub-set. This process will be performed 10
folds. Therefore, each case will be used once as a groundtruth case. Without loss
of generation, let current groundtruth case set be R1, and remaining case set be
R̄1 = {Rk|k = 2, 3, · · · , 10}, where |R̄1| = 9|R1| = 9

10 |R|.
Formally, given a STS case set R̄1 and a photo region φx from R1, we identify

and adapt one or multiple cases to iteratively synthesize a neutral sketch region

to maximally approximate the groundtruth ψ̂x. Let ψfinal
x and ψ

(h)
x respectively

be the final resultant sketch and the interim sketch after the h-th iteration.
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In the first iteration, the algorithm selects a case r̄
(1)
x whose source photo

region φ̄
(1)
x appears visually closest to φx in terms of the normalized mutual infor-

mation [30]. The sketch in the selected case is then denoted as ψ
(1)
x .

For the h-th iteration, the method searches in R̄1 for a best-fit case r̄
(h)
x . For

each candidate case ri in R̄1. The adaptation on ψi is carried out by blending ψi
and ψ

(h−1)
x . The maximum similarity between resultant sketch patch of blending

operation and groundtruth ψ̂x is

θ
(h)
x,i = max

ω∈[0,1]
θ
(
ψ

(h−1)
i,x,ω , ψ̂x

)
, (3)

where θ
(h)
x,i is also represented as the fitness value of ri, ψ

(h−1)
i,x,ω is the resultant

sketch patch of blending ψi and ψ
(h−1)
x with blending weight ω, and θ(ψ

(h−1)
i,x,ω , ψ̂x)

is the visual similarity between ψ
(h−1)
i,x,ω and ψ̂x in terms of normalized mutual

information [30].

The image blending operator to synthesize ψ
(h−1)
i,x,ω is originally proposed in [20].

It generates an inbetween image, It|t∈[0,1]p, of two input images, I0 and I1, by
It = (1 − t)W0(t, I0) + tW1(t, I1), where W0 and W1 are two non-linear warping
functions built from all pairs of corresponding feature points between I0 and I1.
It is obvious that t is identical to our ω. During the process of blending I0 and I1,
their feature point sets, Q(I0) and Q(I1), are also blended to compute the feature
point set for It. Formally, we define the blending operation as follows:(

ψ
(h−1)
i,x,ω , Q(ψ

(h−1)
i,x,ω )

)
= ⊕

(
ψ(h−1)
x , Q

(
ψ(h−1)
x

)
, ψi, Q(ψi), ω

)
, (4)

where ψ
(h−1)
i,x,ω is the resulting image of blending ψi and ψ

(h−1)
x with the blending

parameter ω ∈ [0, 1]; Q(ψ
(h−1)
i,x,ω ) is the resulting set of facial feature points.

A non-linear optimization method [34] is employed as a solver for Equation (3).

After computing θ
(h)
x,i for all candidate cases, the case with maximum θ

(h)
x,i will be

selected as r̄
(h)
x . We denote the maximum θ

(h)
x,i as θ̄

(h)
x . Resultant sketch patch

corresponding to θ̄
(h)
x , ψ

(h)
x , will be involved in the next iteration. This iterative

synthesis procedure terminates when
θ̄(h)
x −θ̄

(h−1)
x

θ̄
(h−1)
x

is less than a threshold (it is set

to 1% in our implementation).

All θ
(h)
x,i generated in aforementioned iterative process are collected as sam-

ple set {θ(h)
x,i |ri ∈ R̄1, h = 1, 2, · · · , nstep(φx)}, where nstep(φx) is the number

of iterations, and all combinations of (φx, Q(φx), φi, Q(φi), ψ
(h−1)
x , Q(ψ

(h−1)
x )) are

collected as training samples. Hence we generate |R̄1|nstep(φx) samples for f1
FE

after synthesizing a sketch for φx. Supposing that the mean value of nstep(φx),
nstep(φx), is 5, and the size of R is 50, we can generate 10|R1||R̄1|nstep(φx) =
0.9|R|2pnstep(φx) = 11250 training samples.

5.2 Learning Fitness Evaluation Model

Given the training samples for f1
FE, we train the fitness evaluation model via

regression. To identify optimal regression model for f1
FE, we employ the ten-fold

cross validation (CV) technique during the model selection process [37].
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Fig. 6 The sizes of the training sample sets for the nine facial regions. The reported fea-
ture dimensionality refers to the reduced dimensionality of the selected feature set with the
optimally chosen regression models.

Fig. 7 The cross-validation errors of candidate regression models of f1
FE for Π1. The averaged

training time for each model is also shown.

Fig. 8 The cross validation errors of candidate regression models of f1
PE for Π1. The averaged

training time for each model is also shown.

The definitions of τττphoto(·) and τττ sketch(·) indicate that the input to f1
FE con-

sists of hundreds of features. The dimensionality of the input features is between
528 and 648 wherein the exact dimensionality depends on the specific type of the
facial region. Its feature selection is accomplished using the minimal-redundancy-
maximal-relevance (mRMR) criterion [33]. However, the mRMR method can only
identify the most important features by a user-specified number. To optimally get
this number, we employ the best-first search algorithm [16] to look for it through
minimizing the CV error. The best regression model is selected by the minimized
CV error derived through performing feature selection for each candidate regres-
sion model.

Fig. 6 shows the sample number and feature dimensionality in the model se-
lection process based on dataset Π1 (see Section 8 for details about Π1). Using
the Weka toolkit [12], 12 most popular regression models, {Mk|k = 1, 2, · · · , 12},
are taken into consideration: bagging regression tree (M1), SVM regression (M2),
M5P (M3), regression tree (M4), conjunctive case (M5), M5Cases (M6), isotonic
regression (M7), additive regression (M8), KNN (M9), linear regression (M10),
pace regression (M11), and decision stump (M12). Let εk be the cross-validation
errors of the k-th candidate regression model Mk for f1

FE, which are applicable
for the 1st facial region. Then {εk|k = 1, 2, · · · , 12} are used to select an optimal
regression model for f1

FE. Fig. 7 shows the cross-validation errors of the candidate
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Table 1 Selected optimal regression models for the FE models for datasets Π1, Π2, and Π3

respectively.

XXXXXXXDataset
Region

1 2 3 4 5 6 7 8 9

Π1 M1 M9 M9 M9 M9 M3 M9 M1 M1

Π2 M1 M1 M9 M9 M1 M1 M1 M1 M1

Π3 M1 M1 M7 M7 M1 M7 M1 M3 M7

Table 2 Selected optimal regression models for the PE models for datasets Π1, Π2, and Π3

respectively.

XXXXXXXDataset
Region

1 2 3 4 5 6 7 8 9

Π1 M1 M1 M1 M1 M1 M1 M6 M6 M1

Π2 M3 M11 M1 M1 M3 M3 M1 M9 M1

Π3 M1 M1 M3 M3 M1 M1 M1 M1 M1

regression models of f1
FE for Π1, from which we find the optimal one is bagging

trees [7]. Table 1 shows the regression models selected for Π1, Π2, and Π3 (see
Section 8 for details about Π2 and Π3), in which we observe that the optimal re-
gression models chosen for FE models may vary across facial regions and datasets.

6 Parameter Estimation Model for Automatic Case Adaptation

Case adaptation is carried out by blending the sketch from the retrieved case
with the interim sketch from previous iteration. To automate the case adaptation,
we train PE models to identify the optimal blending parameter, maximizing the
similarity between the resultant sketch of blending and the hypothetic groundtruth
sketch.

Let f1
PE be the PE model trained for the 1st facial region. In each iteration

of sketch synthesis, a new photo region φx, a sketch region of current interest ψx,
and a case ri are given. PE model is to estimate the optimal parameter ωx,i for
blending ψx and ψi. That is:

ωx,i = f1
PE(τττphoto(φx, Q(φx)), τττphoto(φi, Q(φi)), τττ sketch(ψx, Q(ψx))). (5)

The learning of PE model takes the same training samples for FE model. It is
worth noticing that an optimal blending weight is also acquired, after solving
Equation (3). Therefore, the training data for f1

PE is also accordingly generated as a
by-product while preparing training data for f1

FE, which is described in Section 5.1.

We use the same learning method introduced in Section 5.2 to train PE model.
Fig. 6 also shows the sample number and feature dimensionality in the model
selection process for PE models. Fig. 8 shows the cross-validation errors of the
candidate regression model for f1

PE of Π1. Table 2 shows the regression models
selected for Π1, Π2, and Π3 (see Section 8 for details about Π1, Π2 and Π3),
in which we can also observe that the optimal regression models chosen for PE
models vary across facial regions and datasets.
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Use 1 Case Use Multiple Cases Groundtruth

· · ·

1: 0.9024 4: 0.9036

· · ·

1: 0.8163 3: 0.8316

· · ·

1: 0.8472 3: 0.8700

· · ·

1: 0.7329 3: 0.7455

· · ·

1: 0.8865 3: 0.9276

· · ·

1: 0.9378 5: 0.9531

Fig. 9 Comparison between sketch synthesis results using single case (first column) and
multiple cases (second column). The third column is the ground truth. The number of the
cases used and the similarity with the ground truth image measured by normalized mutual
information [30] is also given for reference.

7 Synthesizing the Desired Sketch via CBR

Given an input facial photo and a set of STS cases of a human artist, the re-
sultant sketch is synthesized progressively with an iterative loop of retrieval and
adaptation of candidate cases until the desired aesthetic style is presented. Fig. 9
and 10 clearly show that the synthesized sketch using multiple cases is much more
close to the ground truth image than the sketch produced using single case in a
sense of normalized mutual information [30]. Moreover, exaggeration imitation is
embedded as a post-processing step.

7.1 Iterative sketching by Cases

To synthesize the sketch in a given input facial photo Ix, the key point is how to
optimally retrieve relevant cases and adaptively fuse them to produce the resultant
sketch. Our CBR based synthesis pipeline is illustrated in Fig. 11, which originates
from the general CBR framework [1].

Given a new facial region φx from a new photo Ix and a set of STS cases, the
process for synthesizing a new sketch ψx is very similar to the one in Section 5.1.

The major difference is that f1
FE and f1

PE are already known now. Therefore, θ
(h)
x,i
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Using 1 Case Using Multiple Cases Ground Truth

· · ·

Sim = 0.5697 Sim = 0.6141

· · ·

Sim = 0.5175 Sim = 0.5367

Fig. 10 Comparison between the synthesized facial sketches using single case (first column)
and multiple cases (second column) for each facial region as compared with the groundtruth
facial sketches (third column). ”Sim” is its visual similarity with the groundtruth image mea-
sured by normalized mutual information [30].

Fig. 11 The pipeline of synthesize sketches for individual facial regions iteratively through
case-based reasoning. Feature points on images are represented by yellow dots.

and optimal ω of Equation 3 can be directly calculated by f1
FE and f1

PE respectively,
ignoring the non-linear optimization for Equation 3.

We are aware of that Liu et al. [22] introduced a similar method for finding
optimal example sketch patches and their blending parameters during a facial tex-
ture synthesis procedure. Their method is based on the local linearity assumption,
which searches the most visually similar examples for an input photo region. The
optimal blending parameters are identified through minimizing the reconstruction
error in terms of the visual similarity between the input photo and the blended
result of the selected example photos. Instead of calculating blending parameters
directly from examples, a large amount of training data from a limited number of
sketch synthesis cases are generated to train PE models, which allows us to fully
utilize available cases for parameter estimation.

The blended image will appear more blurry than the source one, and the post-
processing is usually required. We extend the image analogies algorithm [13], as
an example-based image sharpening procedure with a multi-scale autoregression
process, which can learn from multiple pairs of example images. More concretely,
we use {ψi|i = 1, 2, · · · , |Πl|} as the “filtered” examples and apply a Gaussian
kernel, whose radius and standard deviation are empirically set to 3 and 1 pixels
respectively, over each ψi to generate its “unfiltered” version ψsmoothed

i . Accord-
ing to the exemplified mapping relation {(ψsmoothed

i , ψi)|i = 1, 2, · · · , |Πl}, the
sharpened one of ψfinal

x is synthesized by image analogy. Fig. 12 shows that its
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The blended mouth By high pass filter By our Method

Fig. 12 Comparison with a high-pass filter based method. Our method can present more
details than the high-pass filter based method.

Photo (a) (b) (c)

Fig. 13 Deforming a sketch using the exaggeration field and feature point displacement vectors
sampled from the exaggeration field. (a) is an initial sketch. (b) is generated by a standard
image remapping algorithm [6]. (c) is generated by our revised approach. Notice: (b) and (c)
are best viewed at 400% zoom.

sharpened sketch is much better than the one processed by the high-pass filter-
based method [11] in terms of the visual appearance of sketching.

7.2 Exaggeration

Exaggeration is popular in facial sketch illustrations, which is often captured as a
2D transformation from Si to S′i, represented by exaggeration field Vi.

In our CBR framework, a new EF for exaggeration imitation, Vx, is generated
by a linear system H as H

(
Q(S′x)

)
= Vx, where S′x is a new facial sketch and

Q(S′x) is the set of feature points on S′x.
The linear system has the properties of superposition and homogeneity of de-

gree 1 [9], therefore H
(∑|Πl|

i=1 ωiQ(S′i)
)

=
∑|Πl|
i=1 ωiH

(
Q(S′i)

)
, where {Q(S′i)|i =

1, 2, · · · , |Πl|} is a set of sample inputs of H, and ωi is the salience weight associ-
ated with S′i. Given a new input Q(S′x), we can optimally find a linear combination
of sample inputs to H that best reconstructs Q(S′x). That is:

Ω̄ = arg min
Ω

D
(
Q(S′x),

|Πl|∑
i=1

ωiQ(S′i)
)
, (6)

s.t. ωi ∈ [0, 1],

|Πl|∑
i=1

ωi = 1,

H
(
Q(S′x)

)
≈ H

( |Πl|∑
i=1

ω̄iQ(S′i)
)

=

|Πl|∑
i=1

ω̄iVi, (7)

where Ω = {ωi|i = 1, 2, · · · , |Πl|}, Ω̄ = {ω̄i|i = 1, 2, · · · , |Πl|}, and D(·, ·) is de-
fined as the sum of Squared Euclidean Distances between pairs of corresponding
points in two input feature point sets, and Vi is the sample output of H corre-
sponding to Q(S′i) (see Sec. 4.1 for the method of generating Vi). According to
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the index number specified for each feature point (see Fig. 3), we can naturally
establish a pairwise point-to-point correspondence between the two sets of feature
points.

We cannot theoretically prove the linear assumption of our method. However,
experimentally, the resultant exaggeration by the predicted EF appears highly
close to the ones illustrated by the target human artist.

Once Vx is generated, a straightforward approach for exaggerating S′x is to
warp S′x following the guidance of Vx through a standard image remapping func-
tion [6]. However, Vx is usually noisy, which would cause unreliable deformations
(see Fig. 13(b)). Therefore we firstly get rid of the noise from Vx by interpolat-
ing the control point displacements [36]. And then the smoothed Vx is used to
warp S′x through image remapping [6], which generates the exaggerated sketch Sx
accordingly (see Fig. 13(c)).

8 Experimental Results

In our experiments, we prepared 3 sets of facial sketch illustrations, respectively
denoted as Π1, Π2, Π3 for three human artists respectively. Each set consists of
facial sketch portraits illustrated by one human artist, as differentiated through
the subscript of Πi’s. Every set contains 49 front-view facial photos of 49 different
people where each photo is accompanied by its sketch illustrated by the artist. The
resolutions of the images are 200 by 250 pixels in Π1, 191 by 235 pixels in Π2, and
194 by 247 pixels in Π3. In particular, for Π1, all its facial photos and their sketch
illustrations are from the CUHK student dataset [45]. For Π2 and Π3, 39 photos
are from Π1 and the remaining 10 new human facial photos are newly taken, which
are both included in Π2 and Π3. For the 49 photos respectively in Π2 and Π3, we
hired two artists to draw 49 facial sketches for each set respectively. The artist for
Π2 has more than 20 years of professional experiences in creating human facial
portraits. The artist for Π3 is a PhD student of digital art and design. He has
been a freelance illustrator for 7 years and showed his caricature art pieces in a
national culture and art expo event. In this manual sketch illustration process,
we used a 21-inch LCD to display the human facial photo one by one and asked
artists to draw sketch illustrations for each of the displayed facial photo on their
A4 paper canvas. Our artists were asked to spend as long as they want in creating
these sketch illustrations. After that, all hand-drawn sketches are digitalized by a
scanner. The original resolutions of the images in Π2 and Π3 are 2480 by 3508
pixels. As the image resolution of the released CUHK student dataset is 200 by
250 pixels, we downsample the images in Π2 and Π3 to make our experimental
conditions comparable among the three datasets.

To compare the aesthetic stylization between our approach with that of a facial
sketch synthesis approach in [45] and two commercial packages [26,2], we perform
the leave-one-out test on Π1. It is noted that since the sketch illustrations in Π1

do not present the exaggerative style, the procedure of removing exaggeration
from example sketches (Sec. 4.3) is not performed. That is, for Π1, Si and S′i are
the same. Fig. 14 shows the results by our method and the two peer commercial
software packages, which clearly demonstrate that the sketch illustrations gener-
ated by us appear visually much closer to the target artist’s hand-drawn ones.
Fig. 16 gives more sketching instances by our approach and the state-of-the-art
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Photo (a) (b) (c) Artist I

Fig. 14 Comparing our approach with two commercial software packages. Column (a) and
(b) are generated by the two commercial software packages [26] and [2] respectively. Column
(c) is generated by our approach with the training examples from Π1. The sketch illustrations
created by artist I are the groundtruths, which are not involved in the training process.

Fig. 15 The user study comparing the sketch generation quality by our approach and [45].
Data collected from 2624 completed questionnaires by answering 10 questions.

peer algorithmic approach [45], which also intuitively leads to the same qualitative
comparison conclusion. In this experiment, as we perform the leave-one-out test
on Π1, the number of training samples used for sketch generation is 48, which is
significantly less than the number of sample sketches, at least 88, in [45]. In all
experiments in this paper, less than 50 training samples are used to capture an
artist’s personal facial sketch illustration style.

To make more assessment on the stylization of the sketches produced by our ap-
proach and the peer algorithm, we further conducted a user survey on the sketches
generated in the above experiment. We selected 10 artist-drawn sketches from Π1

and their corresponding sketches generated by our approach and [45] respectively.
We then created an online questionnaire consisting of 10 questions. Each question
presents three images side by side. The hand-drawn sketch illustration is always
shown in the middle. The corresponding sketch illustrations generated by the two
algorithms respectively are randomly placed on the left and right. Each question
asks a human viewer to select among the two images displayed on the left and right
positions of the image triplet. The subjects are asked to answer which one appears
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Photo (a) (b) Artist I Photo (a) (b) Artist II Photo (a) (b) Artist III

Fig. 16 Generating sketch illustrations of facial portraits from input human facial photos in
personal illustration styles of three artists. Column (a) are generated by the peer algorithm
proposed in [45] while column (b) are produced by our algorithm.

visually more similar to the middle image. We released the online questionnaire
on a twitter-like social media community dedicated to comic fans [38], who are
generally very familiar with artistic facial drawing styles. 2624 completed ques-
tionnaires were collected during 3 days. None of the participants was compensated
monetarily, who took part in the online survey due to their curiosity and interest
in facial sketch illustrations. Through a dynamic webpage tracking feature, it is
shown each questionnaire takes around 2.5 minutes on average to be answered.
Among the ten pairs of sketches in our online survey, seven of them get more
votes for our sketches by the subjects, and the remaining three get more votes
for the sketches from the peer algorithm. Overall, 62% of all the 26240 answers
to the ten questions favor resulting sketches by our method (one-sample t-test,
p-value < 0.001; two-sample t-test, p-value < 0.001). Fig. 15 presents more de-
tails about our assessment. The voting clearly shows the superiority of our method
in terms of the visual appearance of sketching.

We also perform leave-one-out tests on the data sets Π2 and Π3. Fig. 16 gives
more synthesized sketches, which demonstrate that our approach is indeed capable
of imitating multiple personal facial illustration styles, with or without exagger-
ations. The first artist sketches human face portraits more or less following the
visual characteristics in the original facial photo. The other two artists present
significant exaggeration in their facial illustrations.

In Fig. 16, it is obvious that the peer algorithm [45] fails to capture the sketch
illustration styles of artists II and III as the generated sketch illustrations have
significant differences to the ones created by the target artists. This is partly
because their algorithm is designed upon the assumption that each facial region in
a photo occupies the same image area as its counterpart region in the corresponding
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Fig. 17 Comparing our approach with the method proposed by [44]. The faces in column (c)
and (e) are generated by our algorithm and the peer algorithm proposed in [44] respectively.

Photo (a) Artist 1 (b) Artist 2

Fig. 18 Human facial sketch portraits generated in two illustration styles for the same set of
input facial photos. Images in column (a) and (b) are generated by our approach. The training
data for generating the images in columns (a) and (b) come from Π1 and Π2 respectively.

sketch illustration does, which is not always true in reality, particularly for sketch
illustrations with significant exaggeration.

We also compare our approach with the transductive learning algorithm pro-
posed by Wang et al. [44]. Fig. 17 shows our resultant sketches in the leave-one-
out test on Π1 and sketches from Wang’s website of results on CUHK face sketch
database [43]. The nasolabial folds [8] is one of the essential elements of facial
stylization and often appears in face portraits drawn by human artist. They are
well preserved and can be significantly observed in our resultant sketches. Unfor-
tunately, nasolabial folds are little presented in sketches generated by the trans-
ductive learning algorithm. Hence, our resultant sketches more closely resembles
the groundtruth sketches by the target human artists.
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Fig. 18 shows more resulting sketches in the leave-one-out tests on Π2 and Π3.
It demonstrates that our method can successfully learn personal sketching styles
of multiple artists and accordingly generate the individual stylized sketches for the
same input photos.

Regarding the time performance, it takes about 1 minute to generate a facial
sketch from an input photo of the resolution of 200 by 250 pixels using the unopti-
mized, single computing core prototype implementation of our algorithm executed
on a PC equipped with Intel i5-3450 3.1GHz CPU and 3.2G memory, while the
peer algorithm [45] takes 3 minutes on the same hardware platform.

Originally our training takes about 3 days to finish. However, we observe that
it is straightforward to implement our training algorithm concurrently since FE
and PE models for each facial region can be trained independently. We evaluated
the parallel computing implementation on a PC with Intel i7 CPU (8 cores) and
6G memory. It took about 8 hours to complete all training tasks. We are thus
optimistic about the computational efficiency of our algorithm in practice with a
parallel implementation.

9 Conclusion and Discussions

We propose a new CBR-based sketch synthesis algorithm that can produce visually
superior results than existing synthesis methods. To the best of our knowledge,
it is the first CBR framework that is explicitly introduced to personally stylize
human facial portrait.

For each human artist to be mimicked, a series of cases are firstly built-up from
her/his exemplars of source facial photo and hand-drawn sketch, and then its styl-
ization for facial photo is transformed as a style-transferring process of iterative
refinement by looking for and applying a series of best-sit cases in a sense of style
optimization. The presented experimental results demonstrate that in comparison
with a state-of-the-art method and a couple commercially available software pack-
ages, the new approach is capable of generating visually more appealing portraits
from the point of view of personal style, which also more closely resemble the
groundtruth sketches by the target human artists.

Our method has a major limitation. It has not supported the synthesize sketch
illustrations for human hair yet. This limitation comes from the difficulty in estab-
lishing correspondences between strokes or texture areas that depict hairs and the
counterpart hair regions on human facial photos. A related future research direc-
tion of this problem is Cross-Modal Face Matching [51]. Besides, if we focus on the
hair of a specific group of people, it is possible to represent the correspondences
through manually indicated key points, like that by Chen et al. [10].
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