Skip to main content

Advertisement

Log in

An extra-parity energy saving data layout for video surveillance

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The advent of big data age has brought about a growing performance and scale of the storage system, as well as huge energy consumption. Based on the sequential data storage featured workload as video surveillance, etc., we proposed EPS-RAID, that is to add a solid state disk(SSD) and a parity disk on S-RAID, and to optimize the random reads and writes in storage system by means of random write logs and Reed-Solomon(RS) code. Preserving the grouping strategy and the local parallel strategy of S-RAID, EPS-RAID has achieved good effect for random reads and writes on standby grouping, especially for the repeated reads and writes on the same logical address. The experiments show that, in the 3 file systems of EXT4, NTFS, NILFS, the energy consumption of EPS-RAID which consists of 2 disks of each grouping has effectively improved under the premise of ensuring performance and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alsmirat M, Jararweh Y, Obaidat I, Gupta B (2016a) Automated wireless video surveillance: an evaluation framework. J Real-Time Image Proc 1–20

  2. Alsmirat M, Jararweh Y, Obaidat I, Gupta BB (2016b) Internet of surveillance: a cloud supported large-scale wireless surveillance system. J Supercomput 1–20

  3. Bagheri S, Zheng J, Sinha S (2016) Temporal mapping of surveillance video for indexing and summarization. Comp Vision Image Underst 144(C):237–257

    Article  Google Scholar 

  4. Chen P, Lee E, Gibson G, Katz R, Patterson D (1997) Raid: high-performance, reliable secondary storage. ACM Comput Surv 26(2):145–185

    Article  Google Scholar 

  5. Fang Y, Tan Y, Zhang Q, Fei W, Cheng Z, Zheng J (2016) An effective RAID data layout for object-based de-duplication backup system. Chin J Electron 25(5):832–840

    Article  Google Scholar 

  6. Gupta B, Agrawal D, Yamaguchi S (2016) Handbook of research on modern cryptographic solutions for computer and cyber security

  7. Li X, Tan Y, Sun Z (2011) Semi-RAID: a reliable energy-aware RAID data layout for sequential data access. In: Proceedings of IEEE 27th Symposium on Mass Storage Systems & Technologies(MSST), pp. 1–11

  8. Li Y, Sun Z, Ma Z, Tan Y (2014) S-raid 5:an energy-saving raid for sequential access based applications. Chinese J Comput 36(6):1290–1302

    Article  Google Scholar 

  9. Li J, Yan H, Liu Z, Chen X (2015) Location-sharing systems with enhanced privacy in mobile online social networks. IEEE Syst J:1–10. doi:10.1109/JSYST.2015.2415835

  10. Liu J, Zheng J, Li Y, Sun Z, Wang W, Tan Y (2013) Hybrid s-raid: an energy-efficient data layout for sequential data storage. Journal of Computer Research and Development 50(1):37–48

    Google Scholar 

  11. Lu Y, Shu J (2013) Survey on FTL-based storage systems. Journal of Computer Research and Development 01:49–59

    Google Scholar 

  12. Ma A, Douglis F, Lu G, Sawyer D, Chandra S, Hsu W (2015) RAIDShield: characterizing, monitoring, and proactively protecting against disk failures. ACM Transactions on Storage 11(4):1–28

    Article  Google Scholar 

  13. Mao B, Feng D, Jiang H, Wu S (2008) GRAID: a green RAID storage architecture with improved energy efficiency and reliability. In: Proceedings of International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, pp. 113–120

  14. Mu Y, Liu J, Zhang J, Mei R (2007) Application of reed-Solomon algorithm in RAID6. Chin J Electron 35(s2):90–94

    Google Scholar 

  15. Narayanan D, Donnelly A, Rowstron A (2008) Write off-loading:practical power management for enterprise storage. ACM Transactions on Storage 4(3):256–267

    Article  Google Scholar 

  16. Pan Z, Zhang Y, Kwong S (2015) Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans Broadcast 61(2):166–176

    Article  Google Scholar 

  17. Pan Z, Lei J, Zhang Y, Sun X (2016) Fast motion estimation based on content property for low-complexity h.265/hevc encoder. IEEE Trans Broadcast 62:1–10

    Article  Google Scholar 

  18. Patterson D, Gibson G, Katz R (1988) A case for redundant arrays of inexpensive disks (RAID). In: Proceedings of ACM international conference on management of data, pp 109–116

  19. Pinheiro E, Bianchini R, Dubnicki C (2006) Exploiting redundancy to conserve energy in storage systems. ACM Sigmetrics Performance Evaluation Review 34(1):15–26

    Article  Google Scholar 

  20. Plank J (2010) A tutorial on reed-Solomon coding for faulttolerance in raid-like systems. Softw Pract Exp 27(9):995–1012

    Article  Google Scholar 

  21. Plank J, Ding Y (2005) Note: correction to the 1997 tutorial on reed–Solomon coding. Softw Pract Exp 35(2):189–194

    Article  Google Scholar 

  22. Psannis K (2009) Efficient redundant frames encoding algorithm for streaming video over error prone wireless channels. IEICE Electronics Express 6(21):1497–1502

    Article  Google Scholar 

  23. Psannis K (2016) Hevc in wireless environments. J Real-Time Image Proc 12(2):509–516

    Article  Google Scholar 

  24. Psannis K, Ishibashi Y (2008) Efficient flexible macroblock ordering technique. IEICE Trans Commun E91B(8):2692–2701

    Article  Google Scholar 

  25. Psannis K, Ishibashi Y (2009) Efficient error resilient algorithm for h.264/avc: mobility management in wireless video streaming. Telecommun Syst 41(2):65–76

    Article  Google Scholar 

  26. Storer M, Greenan K, Miller E, Voruganti K (2008) Pergamum: replacing tape with energy efficient, reliable, disk-based archival storage. In: Proceedings of Usenix Conference on File and Storage Technologies(FAST), pp.1–16

  27. Sun Z, Tan Y, Li Y (2014) An energy-efficient storage for video surveillance. Multimed Tools Appl 73(1):151–167

    Article  Google Scholar 

  28. Sun Z, Zhang Q, Li Y, Tan Y (2016) DPPDL: a dynamic partial-parallel data layout for green video surveillance storage. IEEE Trans Circuits Syst Video Technol. doi:10.1109/TCSVT.2016.2605045

    Google Scholar 

  29. Wang J, Zhu H, Li D (2007) Eraid: conserving energy in conventional disk-based raid system. IEEE Trans Comput 57(3):359–374

    Article  MathSciNet  Google Scholar 

  30. Wang J, Li T, Shi Y, Lian S, Ye J (2016) Forensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphics. Multimed Tools Appl 1–17

  31. Weddle C, Oldham M, Qian J, Wang A, Reiher P, Kuenning G (2007) Paraid: a gear-shifting power-aware raid. ACM Transactions on Storage 3(3):1–13

    Article  Google Scholar 

  32. Wu S, Jiang H, Feng D, Tian L, Mao B (2009) WorkOut: I/O workload outsourcing for boosting RAID reconstruction performance. In: Proceedings of Usenix Conference on File and Storage Technologies(FAST), pp 239–252

  33. Yuan C, Sun X, Lv R (2016) Fingerprint liveness detection based on multi-scale lpq and pca. China Commun 13(7):60–65

    Article  Google Scholar 

  34. Zhang X, Tan Y, Xue Y, Zhang Q, Li Y, Zhang C, Zheng J (2016) Cryptographic key protection against FROST for mobile devices. Clust Comput. doi:10.1007/s10586-016-0721-3

    Google Scholar 

  35. Zhu R, Tan Y, Zhang Q, Wu F, Zheng J, Xue Y (2016a) Determining image base of firmware files for ARM devices. IEICE Trans Inf Syst E99D(2):351–359

    Article  Google Scholar 

  36. Zhu R, Tan Y, Zhang Q, Li Y, Zheng J (2016b) Determining image base of firmware for ARM devices by matching literal pools. Digit Investig 16:19–28

    Article  Google Scholar 

  37. Zhu R, Zhang B, Mao J, Zhang Q, Tan Y (2016c) A methodology for determining the image base of arm-based industrial control system firmware. Int J Crit Infrastruct Prot. doi:10.1016/j.ijcip.2016.12.002

    Google Scholar 

  38. Zhu H, Tan Y, Zhang X, Zhu L, Zhang C, Zheng J (2017) A round-optimal lattice-based blind signature scheme for cloud services. Futur Gener Comput Syst. doi:10.1016/j.future.2017.01.031

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No.61370063, 61379048, No. U1636213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan Yu-An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Changyou, Z., Yuan, X. et al. An extra-parity energy saving data layout for video surveillance. Multimed Tools Appl 77, 4563–4583 (2018). https://doi.org/10.1007/s11042-017-4540-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4540-1

Key words

Navigation