Skip to main content
Log in

Collaborative strategy for visual object tracking

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Adaptively learning the difference between object and background, discriminative trackers are able to overcome the complex background problem in visual object tracking. However, they are not robust enough to handle the out-of-plane rotation of object, which reduces recall performance. Meanwhile, allowing individual parts certain criterion of freedom, part-based trackers can better handle the out-of-plane rotation problem. However, they are prone to be affected by complex background, leading to low precision performance. To simultaneously address both issues, we propose a collaborative strategy that makes mutual enhancement between a discriminative tracker and a part-based tracker possible to obtain better overall performance. On one hand, we use validated results from the part-based tracker to update the discriminative tracker for recall performance improvement. On the other hand, based on confident results from the discriminative tracker we adaptively update the part-based tracker for simultaneous precision performance improvement. Experiments on various challenge sequences show that our approach achieved the state-of-the-art performance, which demonstrated the effectiveness of mutual collaboration between the two trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments based tracking using the integral histogram. In CVPR 1:798–805

  2. Avidan S (2004) Support vector tracking. IEEE Trans Pattern Anal Mach Intell 26:1064–1072

    Article  Google Scholar 

  3. Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271

    Article  Google Scholar 

  4. Babenko B, Yang MH, Belongie S (2009) Visual tracking with online multiple instance learning. In CVPR

  5. Bradski GR (1998) Computer vision face tracking for use in a perceptual user interface. Intel Technol J 2(2):12–21

    Google Scholar 

  6. Calonder M, Lepetit V, Ozuysal M, Trzcinski T, Strecha C, Fua P (2012) BRIEF: Computing a local binary descriptor very fast. Pattern Analysis and Machine Intelligence 34(7):1281–1298

    Article  Google Scholar 

  7. Comaniciu D, Ramesh V, Meer P (2003) Kernel-Based Object Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(5):564–577

    Article  Google Scholar 

  8. Hare S, Saffari A, Torr PHS (2011) Struck: Structured output tracking with kernels. In ICCV, IEEE International Conference on, 263–270

  9. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Computer Vision and Pattern Recognition. https://arxiv.org/abs/1512.03385

  10. Kalal Z, Mikolajczyk K and Matas J (2010) Forward-backward error: automatic detection of tracking failures. In: Proceedings of the 2010 20th International Conference on Pattern Recognition. IEEE Computer Society Washington, p. 2756–2759

  11. Kalal Z, Matas J, Mikolajczyk K (2010) P-N learning: bootstrapping binary classifiers by structural constraints. In: 23rd IEEE Conference on Computer Vision and Pattern Recognition, CVPR, June 13 -18, San Francisco, CA, USA. http://cmp.felk.cvut.cz/~matas/papers/kalal-pn_learning-cvpr10.pdf

  12. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. TPAMI 34(7):1409–1422

    Article  Google Scholar 

  13. Klein DA, Schulz D, Frintrop S, Cremers AB (2010) Adaptive real-time video-tracking for arbitrary objects. IEEE/RSJ 6219(1):772–777

    Google Scholar 

  14. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In NIPS 25(2):1097–1105

  15. Kwon J, Lee KM (2009) Tracking of a non-rigid object via patch-based sampling. In CVPR

  16. LeCun Y, Boser B, Denker J, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to hand-written zip code recognition. Neural Computation 1(4):541–551

  17. Lepetit V, Lagger P, Fua P (2005) Randomized trees for real-time keypointrecognition. In CVPR. doi: 10.1109/CVPR.2005.288

  18. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Cheng-Yang F, Berg AC (2016) SSD: single shot MultiBox detector. In ECCV doi: 10.1007/978-3-319-46448-0_2

  19. Lowe DG (2004) Distinctive image features for scale-invariant Keypoints. IJCV 60(2):91–110

    Article  Google Scholar 

  20. Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In IJCAI

  21. Ma C, Huang JB, Yang X, Yang MH (2015) Hierarchical convolutional features for visual tracking. In CVPR

  22. Nam H, Han B (2016) Learning multi-domain convolutional neural networks for visual tracking. In CVPR

  23. Nebehay G, Pflugfelder R (2014) Consensus-based matching and tracking of keypoints. In TPAMI, 27(10) doi: 10.1109/WACV.2014.6836013

  24. Nebehay G, Pflugfelder R (2015) Clustering of static-adaptive correspondences for deformable object tracking. In CVPR

  25. Nebehay G, Micusik B, Picus C, Pflugfelder R (2011) Evaluation of an online learning approach for robust object tracking. Technical Report AIT-DSS-TR-0279 AIT Austrian Institute of Technology

  26. Ozuysal M, Fua P, Lepetit V (2007) Fast keypoint recognition in ten lines of code. In CVPR

  27. Pernici F, Del Bimbo A (2014) Object tracking by oversampling local features. In TPAMI, 36(12)

  28. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: Unified, real-time object detection. In CVPR

  29. Rosten E, Porter R, Drummond T (2010) Faster and better: a machine learning approach to corner detection. Pattern Anal Mach Intell 32(1):105–110

    Article  Google Scholar 

  30. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. Computer Vision and Pattern Recognition. https://arxiv.org/abs/1409.1556

  31. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 7-12 June 2015, doi: 10.1109/CVPR.2015.7298594

  32. Tu F, Ge SS Suryadi HP, et al (2016) Collaborative visual object tracking via hierarchical structure. In Social Robotics

  33. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In CVPR

  34. Vojir T, Matas J (2014) The enhanced flock of trackers. In RRIV

  35. Wang L, Ouyang W, Wang X, Lu H (2015) Visual tracking with fully convolutional networks. In ICCV

  36. Wang N, Shi J, Yeung D, Jia J (2015) Understanding and diagnosing visual tracking systems. In ICCV

  37. Wen L, Cai Z, Lei Z (2014) Robust online learned Spatio-Temporal Context model for visual tracking. IEEE Trans Image Process 23:2

    Article  MathSciNet  MATH  Google Scholar 

  38. Wu Y, Lim J, Yang M-H (2013) Online object tracking: A benchmark. In CVPR

  39. Xu R, Wunsch D (2005) Survey of clustering algorithms. TNN, 16(3)

  40. Zhang K, Zhang L, Yang M-H (2012) Real-time compressive tracking. In ECCV

  41. Zhang K, Zhang L, Liu Q, Zhang D, Yang M-H (2014) Fast tracking via dense spatio-temporal context learning. In ECCV

  42. Zhong W, Lu H, Yang M-H (2012) Robust object tracking via sparse collaborative appearance model. In CVPR

Download references

Acknowledgements

This work was supported by Xi’an Polytechnic University Innovation Fund for Graduate Students (CX201622) and Beijing Qfeel Technology Co., Ltd., China. We gratefully acknowledge Intel Labs China for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongquan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Chen, N. & Jiang, S. Collaborative strategy for visual object tracking. Multimed Tools Appl 77, 7283–7303 (2018). https://doi.org/10.1007/s11042-017-4633-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4633-x

Keywords

Navigation