Skip to main content
Log in

A detector of structural similarity for multi-modal microscopic image registration

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a Detector of Structural Similarity (DSS) to minimize the visual differences between brightfield and confocal microscopic images. The context of this work is that it is very challenging to effectively register such images due to a low structural similarity in image contents. To address this issue, DSS aims to maximize the structural similarity by utilizing the intensity relationships among red-green-blue (RGB) channels in images. Technically, DSS can be combined with any multi-modal image registration technique in registering brightfield and confocal microscopic images. Our experimental results show that DSS significantly increases the visual similarity in such images, thereby improving the registration performance of an existing state-of-the-art multi-modal image registration technique by up to approximately 27%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. http://www.nikoninstruments.com/Learn-Explore/Techniques/Brightfield.

References

  1. Awad AI, Hassaballah M (2016) Image Feature Detectors and Descriptors. Springer International Publishing

  2. Cinque L, Foresti G, Lombardi L (2004) A clustering fuzzy approach for image segmentation. Pattern Recogn (PR) 37(9):1797–1807

    Article  MATH  Google Scholar 

  3. Cheng HD, Jiang XH et al (2001) Color image segmentation: advances and prospects. Pattern Recogn (PR) 34(12):2259–2281

    Article  MATH  Google Scholar 

  4. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell (TPAMI) 24(5):603–619

    Article  Google Scholar 

  5. Chaira T, Ray AK (2004) Threshold selection using fuzzy set theory. Pattern Recogn Lett (PRL) 25(8):865–874

    Article  Google Scholar 

  6. Chen J, Tian J (2009) Real-time multi-modal rigid registration based on a novel symmetric-SIFT descriptor. Prog Nat Sci (PNS) 19(5):643–651

    Article  Google Scholar 

  7. Chen J, Tian J et al (2010) A partial intensity invariant feature descriptor for multimodal retinal image registration. IEEE Trans Biomed Eng (TBME) 57 (7):1707–1718

    Article  Google Scholar 

  8. Dettmeyer RB (2011) Staining techniques and microscopy. Forensic histopathology. Springer, Berlin, Heidelberg, pp 17–35

    Book  Google Scholar 

  9. Felzenszwalb PF, Huttenlocher DP (2004) Efficient Graph-Based image segmentation. Int J Comp Vis (IJCV) 59(2):167–181

    Article  Google Scholar 

  10. Fu X, Wang CY et al (2015) Robust Image Segmentation Using Contour-guided Color Palettes International conference on computer vision (ICCV), pp 1618–1625

    Google Scholar 

  11. Gong M, Liang Y et al (2013) Fuzzy C-Means Clustering With Local Information and Kernel Metric for Image Segmentation. IEEE Trans. Image Process. (TIP)

  12. Ghassabi Z, Shanbehzadeh J et al (2013) An efficient approach for robust multimodal retinal image registration based on UR-SIFT features and PIIFD descriptors. EURASIP J Image and Video Processing 1(25):1–16

    Google Scholar 

  13. Heinrich MP, Jenkinson M et al (2012) MIND: Modality Independent neighbourhood descriptor for multi-modal deformable registration. Med Image Anal (MIA) 16(7):1423–1435

    Article  Google Scholar 

  14. Hossain MT, Lv G, Teng SW, Lu G, Lackmann M (2011) Improved symmetric-SIFT for Multi-modal Image Registration International conference digital image computer: technology and application (DICTA), pp 197–202

    Google Scholar 

  15. Hartigan JA, Wong MA (1979) Algorithm AS 136: a k-means clustering algorithm. Appl Stat 28(1):100–108

    Article  MATH  Google Scholar 

  16. Ilea DE, Whelan PF (2011) Image segmentation based on the integration of colour-texture descriptors—A review. Pattern Recogn (PR) 44(10):2479–2501

    Article  MATH  Google Scholar 

  17. Jonghye W, Maureen S, Prince JL (2015) Multimodal registration via mutual information incorporating geometric and spatial context. IEEE Trans Image Process (TIP) 24(2):757–769

    Article  Google Scholar 

  18. Kim TH, Lee KM, Lee SU (2013) Learning full pairwise affinities for spectral segmentation. IEEE Trans Pattern Anal Mach Intell (TPAMI) 35(7):1690–1703

    Article  Google Scholar 

  19. Katikireddy KR, O’Sullivan F (2011) Immunohistochemical and immunofluorescence procedures for protein analysis. Methods Mol Biol (MIMB) 784 (4):155–167

    Article  Google Scholar 

  20. Kelman A, Sofka M et al (2007) Keypoints Descriptors for Matching Across Multiple Image Modalities and Non-linear Intensity Variations International conference on computer vision and pattern recognition (CVPR), pp 1–7

    Google Scholar 

  21. Klein S, Staring M et al (2010) Elastix: A Toolbox for Intensity-Based Medical Image Registration. IEEE Trans Med Imag (TMI) 29(1):196–205

    Article  Google Scholar 

  22. Lowe D (2004) Distinctive image features from Scale-Invariant keypoints. Int J Comp Vis (IJCV) 2(60):91–110

    Article  Google Scholar 

  23. Lee JA, Cheng J et al (2015) A Low-dimensional Step Pattern Analysis Algorithm with Application to Multimodal Retinal Image Registration Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 1046–1053

    Google Scholar 

  24. Li C, Huang R et al (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process (TIP) 20(7):2007–2016

    Article  MathSciNet  MATH  Google Scholar 

  25. Lv G, Teng SW, Lu G (2016) Enhancing SIFT-based image registration performance by building and selecting highly discriminating descriptors. Pattern Recogn Lett (PRL) 84:156–162

    Article  Google Scholar 

  26. Lv G, Teng SW, Lu G, Lackmann M (2013) Maximizing Structural Similarity in Multimodal Biomedical Microscopic Images for Effective Registration IEEE International conference on multimedia and expo (ICME), pp 1–6

    Google Scholar 

  27. Lv G, Teng SW, Lu G, Lackmann M (2013) Detection of structural similarity for multimodal microscopic image registration International conference digital image computer: technology and application (DICTA), pp 1–8

    Google Scholar 

  28. Li Z, Wu XM, Chang SF (2012) Segmentation Using Superpixels: A bipartite graph partitioning approach International conference on computer vision and pattern recognition (CVPR), pp 789–796

    Google Scholar 

  29. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics International conference on computer vision (ICCV), pp 416–423

    Google Scholar 

  30. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell (TPAMI) 27(10):1615–1630

    Article  Google Scholar 

  31. Ma L, Staunton RC (2007) A modified fuzzy C-means image segmentation algorithm for use with uneven illumination patterns. Pattern Recogn (PR) 40 (11):3005–3011

    Article  MATH  Google Scholar 

  32. Otsu N (1979) A threshold selection method from Gray-Level histogram. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  MathSciNet  Google Scholar 

  33. Petitjean C, Dacher JN (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal (MIA) 15(2):169–184

    Article  Google Scholar 

  34. Ramos-Vara JA (2005) Technical aspects of immunohistochemistry. Vet Pathol (VET) 42(4):405–426

    Article  Google Scholar 

  35. Rai V, Dey N (2007) The Basics of Confocal Microscopy. INTECH Open Access Publisher

  36. Smistad E, Falch TL et al (2015) Medical image segmentation on GPUs – A comprehensive review. Med Image Anal (MIA) 20(1):1–18

    Article  Google Scholar 

  37. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell (TPAMI) 22(8):888–905

    Article  Google Scholar 

  38. Saleem S, Sablatnig R (2014) A Robust SIFT Descriptor for Multispectral Images. IEEE Signal Process Lett 21(4):400–403

    Article  Google Scholar 

  39. Teng SW, Hossain MT, Lu G (2015) Multimodal image registration technique based on improved local featuer descriptors. J. Electron Imaging (JEI) 24(1):013013–1–17

    Article  Google Scholar 

  40. Wang Z, Bovik AC et al (2004) Image quality assessment: From error visibility to structural similarity. IEEE Trans Pattern Anal Mach Intell (TPAMI) 13(4):600–612

    Google Scholar 

  41. Wachinger C, Navab N (2012) Entropy and Laplacian images: Structural representations for multi-modal registration. Med Image Anal (MIA) 16(1):1–17

    Article  Google Scholar 

  42. Yang G, Stewart CV et al (2007) Registration of challenging image pairs: initialization, Estimation, and Decision. IEEE Trans Pattern Anal Mach Intell (TPAMI) 29(11):1973–1989

    Article  Google Scholar 

  43. Zitova B, Flusser J (2003) Image registration methods: A survey. Image Vis Comput (IVC) 21:977–1000

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Mary Vail from Department of Biochemistry & Molecular Biology of Monash University for providing valuable information to accurately describe how brightfield and confocal microscopic images are captured.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, G., Teng, S.W. & Lu, G. A detector of structural similarity for multi-modal microscopic image registration. Multimed Tools Appl 77, 7675–7701 (2018). https://doi.org/10.1007/s11042-017-4669-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4669-y

Keywords

Navigation