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Abstract Multi-view registration is a fundamental but challenging task in
3D reconstruction and robot vision. Although the original motion averaging
algorithm has been introduced as an effective means to solve the multi-view
registration problem, it does not consider the reliability and accuracy of each
relative motion. Accordingly, this paper proposes a novel motion averaging al-
gorithm for multi-view registration. Firstly, it utilizes the pair-wise registration
algorithm to estimate the relative motion and overlapping percentage of each
scan pair with a certain degree of overlap. With the overlapping percentage
available, it views the overlapping percentage as the corresponding weight of
each scan pair and proposes the weighted motion averaging algorithm, which
can pay more attention to reliable and accurate relative motions. By treating
each relative motion distinctively, more accurate registration can be achieved
by applying the weighted motion averaging to multi-view range scans. Exper-
imental results demonstrate the superiority of our proposed approach com-
pared with the state-of-the-art methods in terms of accuracy, robustness and
efficiency.

Keywords Multi-view registration · Iterative closest point algorithm ·
Overlapping percentage · Motion averaging

1 Introduction

In the past decades, registration problem has been attracted immense at-
tentions in many domains, such as 3D reconstruction [17,2,3], shape recogni-
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tion [4] and robot mapping [5,6]. According to the number of range scans to
be registered, the problem of registration can be divided into two categories:
pair-wise registration and multi-view registration.

For the pair-wise registration, the most popular approach is the iterative
closest point (ICP) algorithm [7], which has activated a bunch of registration
algorithms to be proposed and improved. Given initial parameters, it itera-
tively establishes the correspondence between two scan range and calculate
the rigid transformation by minimizing the least square error. Although this
algorithm is efficient, it can not be deal with outliers. Accordingly, a straight-
forward solution is to reject point pairs with distances larger than the speci-
fied threshold [9]. Besides, Godin [10] proposed the concept of weighted scan
pairs, which can assign lower weights to point pairs with large point-to-point
distances. These approaches are simple but ineffective due to the varied reso-
lution of range scans. Therefore, Chetverikov et al. [8] proposed the trimmed
ICP (TrICP) algorithm, which introduced an overlapping percentage into the
original ICP algorithm so as to automatically reject outliers. Moreover, some
probabilistic approaches [11,12,13,14] were also proposed for the registration
of partially overlapping range scans. As most of these approaches are based on
the idea of ICP algorithm, they all suffers from the local convergence problem.
To obtain the desired global minimum, genetic algorithm (GA) [15,16], as well
as the particle filter [17] has been adopted to search the optimal solution for
registration.

The above-mentioned approaches can only deal with pair-wise registration
problem. To solve the multi-view registration problem, Chen and Medioni [18]
proposed a primary approach. It repeatedly registers two range scans and in-
tegrates them into one range scan until all the range scans are integrated into
the whole model. However, the error accumulation is an unavoidable problem
in this approach. To address this issue, some other approaches has been pro-
posed and most of them were based on the pair-wise registration algorithms.
Given the pair-wise registration results, the multi-view registration can be con-
verted into a quadratic programming problem of Lie algebra parameters [19]
and solved by distributing the accumulation error to proper positions in the
graph, where each node and each edge in the graph represents a range scan
and a pairwise registration, respectively. Recently, Fantoni et al. [20] and Guo
et al. [21] proposed two novel approaches for registration of multiple range
scans by extracting and describing the features from range scans. Although
these approaches are efficient, there may not have enough features to be ex-
tracted from range scans, which can lead to registration failure. Besides, Zhu
et al. [22] proposed a coarse-to-fine approach for multi-view registration. In
this approach, each range scan is sequentially registered to a coarse model re-
constructed by other registered range scans. By applying the TrICP algorithm,
it can obtain good registration result for each range scan, which can then be
immediately utilized to refine the coarse model for registration of other range
scans. Since the TrICP algorithm is applied to registration, its accuracy is
satisfactory, yet it may be trapped into local minimum due to the poor initial
parameters.
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Additionally, the multi-view registration can also be viewed as the problem
of low-rank and sparse matrix decomposition [23]. By applying the pair-wise
registration approach, it can obtain the relative motions for some scan pairs
with high overlapping percentage and then concatenate them into a large ma-
trix. As some scan pair only contain low overlapping percentage, there are miss-
ing data in the assembled matrix. To achieve multi-view registration, this large
matrix should be recovered. This is a low-rank and sparse matrix decomposi-
tion problem, which can be solved by many algorithms, such as R-GoDec [24],
Grasta [25] and L1-Alm [26]. However, this approach may not achieve multi-
view registration due to the high ratio of missing data. Recently, Govindu and
Pooja [27] proposed the motion averaging algorithm, which can be applied to
a set of relative motions and recover the global motions for each range scan.
With the motion averaging algorithm, the prerequisite is how to obtain accu-
rate and reliable relative motions. Subsequently, Li and Zhu [29] proposed a
method to estimate the overlapping percentage between each range scan pair,
so as to apply the pair-wise registration approach to scan pairs with a cer-
tain degree of overlapping percentage. However, the original motion averaging
algorithm treat each relative motion equally, which may lead to inaccurate
results for multi-view registration.

Accordingly, this paper extends the approach presented in [27] and pro-
poses the weighted motion averaging algorithm for multi-view registration of
range scans. The main differences between the previous work [27] and this
one are described as follows: 1) it presents a method to estimate the over-
lapping percentage between scan pair involved in multi-view registration; 2)
for the scan pair with a certain degree of overlapping percentage, the TrICP
algorithm is unitized to calculate the relative motion with the corresponding
weight indicated its accuracy and reliability; 3) weighted motion algorithm is
proposed to pay more attention to the relative motion with large weight. All
these three techniques can improve the performance of multi-view registration.

The remainder of this paper is organized as follows: Section 2 briefly in-
troduces the principle of Motion averaging. After that, our proposed approach
is demonstrated in Section 3. Then in Section 4, experimental results are dis-
played to compare with some related approaches. Finally, some conclusions
are drawn in Section 5.

2 Motion averaging

In the motion averaging algorithm, the rigid transformation (R,
→
t ) can be

assembled into the matrix of Lie group and has the form as the following:

M =

[
R

→
t

O 1

]
, (1)

where M ∈ SE(3), R ∈ SO(3) and O = [0, 0, 0].
In mutli-view registration, the above matrix has two forms: relative motion

Mij and global motion MN , which indicate the motion from jth range scan
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to ith range scan and Nth range scan to the reference range scan, respectively.
The goal of multi-view registration is to acquire a set of global motions:

Mglobal = {I, M2, ... , MN} , (2)

from a set of relative motions:

Mij = (Mi)
−1Mj . (3)

Given accurate relative motions and global motions, the following equation
can be established:

I = MiMij(Mj)
−1, (4)

where I represent the identity matrix. However, the relative motions are ob-
tained by the pair-wise registration, which inevitably involves error. Therefore,
the following increment can be defined as follows:

∆Mij = MiMij(Mj)
−1. (5)

As in [28], we can assign a 6*(6n) matrix Dij to each relative motion:
Dij =

[
. . . −Iij . . . Iij . . .

]
, where the 6*6 identity matrices −Iij and Iij are

located in the position of ith block and jth block, respectively. Stacking all
these matrix into one single matrix, it can directly obtain the formulation
D = [Dij1,Dij2, . . .Dijr]

T , where r indicates the number of participating
scan pairs. According to [28], the original motion averaging algorithm can be
summarized as Algorithm 1:

Algorithm 1 Motion Averaging Algorithm

Input: {Mij1,Mij2, · · · ,Mijr}
Output: Mglobal = {I, M2, ... , MN}

Set Mglobal to an initial guess
Do
∆Mij = MiMij(Mj)

−1

∆mij = log(∆Mij)
∆vij = vec(∆mij)
∆= = D†∆Vij

∀k ∈ [2, N ], Mk = e∆mkMk

Repeat till ‖∆=‖ < ε

where log(.) and exp(.) denotes matrix operations, mij is the corresponding
Lie algebra of Mij , ∆mij indicates the corresponding Lie algebra element of
∆Mij and D† is the pseudo-inverse of D. As ∆mij is a skew-symmetric ma-
trix, it can be uniquely expressed by a 6-element vector given by ∆vij , which
is obtained by the operation vec(.). Besides, all ∆vij vectors are stacked into
one matrix, which has the form: ∆Vij = [∆vij1, ∆vij2, . . . ,∆vijr]

T . Similarly,
the ∆= contains all the variables vi stacked together into a single vector.

In the multi-view registration, the pair-wise registration approach should
be utilized to obtain relative motions, which are taken as the input of the
motion averaging algorithm. As there is no perfect registration approach, the
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pair-wise registration result contains error, which can varied from small to
large due to the outliers and noise of scan pair. Therefore, the accuracy and
reliability of each relative motion are totally different. However, the original
motion averaging algorithm treats each relative motion equally, which can lead
to inaccurate multi-view registration result. To obtain more accurate result,
more effective motion averaging algorithm should be designed.

3 The proposed multi-view registration approach

In this section, an effective approach is proposed for multi-view registration
of initially posed range scans and its overview can be shown in Fig. 1. As shown
in Fig. 1, the proposed approach consists of the following three major steps.
1) Estimate the overlapping percentage for each scan pair; 2) Compute the
relative motion and its corresponding weight for each pair of range scans with
high overlapping percentage; 3) Calculate the multi-view registration by the
weighted motion averaging algorithm.

Subsequently, these three steps will be presented by more details.

...

iM

... ...

i

j

Estimation of i j
Pair-wise Registration

Output

  ,
1

ijr ijr

N
w

r
M

ijk thr 

Weighted Motion Averaging

i

j

Initial Model Fine Model

jM

ij ijw M

1 i j

Fig. 1: The framework of proposed approach for multi-view registration of
range scans

3.1 Estimation of the overlapping percentage

To obtain reliable and accurate relative motions, the pair-wise registration
algorithm can be only applied to these scan pairs which contain a certain
degree of overlapping percentages. Here, we employ our previous method [27]
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to estimate the overlapping percentage ξij for each scan pair. It does not
directly estimate the overlapping percentage for each individual scan pair.
Instead, it firstly determines the distance threshold by considering all the scans
and then utilize this threshold to estimate overlapping percentages. Since it
uses all scans to estimate the overlapping percentage for each scan pair, the
estimation result is reliable, even though the actual overlapping percentage of
one scan pair may be low.

As shown in Fig. 1, the proposed approach should be implemented in iter-
ative manner to achieve good multi-view registration. Given good registration
parameters, the overlapping percentage can be estimated accurately by our
previous method, which is helpful to multi-view registration. Intuitively, it
seems that the overlapping percentage estimation can also be included in the
iterative loop, so as to compute more accurate the overlapping percentage.
However, the percentage estimation is time-consuming and the estimation re-
sults are only adopted to judge whether one scan pair contains high or low
overlapping percentage. Therefore, the accuracy should yield to efficiency and
estimation is only implemented once.

3.2 Pair-wise registration

To guarantee good pair-wise registration, the pair-wise registration can
only by applied to these scan pairs with overlapping percentage ξij > ξthr.
As shown in Fig. 1, the pair-wise registration approach should provide the
motion and its corresponding weight for each pair of range scans with high
overlapping percentage. Because it is easy to obtain relative motion by any
pair-wise registration, so its corresponding weight will be designed as follows.

3.2.1 Design of the weight

Given a set of relative motions, the original motion averaging algorithm
views and treats each relative motion equally. However, some relative motions
are accurate and other maybe not very accurate. Therefore, the weight of each
motion should be introduced so as to deal with them differently.

Intuitively, more attention should be paid to these relative motions, which
are more accurate and reliable than others. Therefore, it should find a function,
which can indicates the accuracy and reliability of the relative motions. As
the relative motions are estimated by the pair-wise registration algorithm,
we utilized the TrICP algorithm to estimate relative motion between scan
pairs with different overlapping percentages and recorded the corresponding
registration error with respect to overlapping percentage.

As shown in Fig. 2, the pair-wise registration error is dramatically de-
creased with the increase of overlapping percentage. This is because a scan
pair with low overlapping percentage contains more outliers, which can reduce
the reliability and accuracy of pair-wise registration results. Subsequently, it
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Fig. 2: The rotation error with respect to the overlapping percentage of range
scans to be registered

is straight-forward to design the weight of relative motions as follows:

wij = ξ2ij , (6)

where ξij =
|Pi∩Pj |
|Pj | , Pi and Pj denotes two range scans, Pi ∩ Pj denotes the

overlapping regions of the scan pair. That means the overlapping percentage
can be utilized to indicate the accuracy and reliability of the corresponding
relative motion.

3.2.2 Computation of the relative motion

Obviously, it is expected that the pair-wise registration can estimate the
relative motion and the corresponding overlapping percentage for a given pair
of range scans simultaneously. Therefore, the TrICP algorithm can be adopted.

Suppose there are two partially overlapping range scans, a data shape

P
∆
= {→p i}

Np
i=1 and a model shape Q

∆
= {→q j}

Nq
j=1. Denote ξ, R ∈ R3×3,

→
t ∈

R3 as the overlapping percentage, 3D rotation matrix and translation vector,
respectively. The goal of partially overlapping registration is to find the optimal
transformation (R,

→
t ) with which P is registered to be in the best alignment

with Q. This problem can be formulated as follows:

min
R,

→
t ,ξ

(
1

|Pξ|(ξ)1+λ
∑

→p i∈Pξ

∥∥R→
p i+

→
t −

→
q c(i)

∥∥2
2

)
s.t. RTR = I3,det(R) = 1

ξ ∈ [ξthr, 1], Pξ ⊆ P, |Pξ| = ξ |P |

, (7)
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where
→
q c(i) denotes the correspondence of the

→
p i in model shape, λ is a

preset parameter, |·| denotes the cardinality of a scan and Pξ represents the
overlapping part of data shape to model shape.

The TrICP algorithm achieve pair-wise registration by iterations. Given
the initial transformation (R0,

→
t 0), three steps are included in each iteration:

(1) Based on (Rk−1,
→
t k−1), assign the correspondence between two scans:

ck(i) = arg min
j∈{1,2,..,Nq}

∥∥Rk−1
→
p i +

→
t k−1 −

→
q j
∥∥
2
. (8)

(2) Update the overlapping percentage ξk and subset Pξk :

(ξk, Pξk) = arg min
ξthr<ξ≤1

(
∑

→p i∈Pξ

∥∥Rk−1
→
p i +

→
t k−1 −

→
q ck(i)

∥∥2
2

/
|Pξ| ξ1+λ). (9)

(3) Calculate the kth transformation:

(Rk,
→
t k) = arg min

ξ,R,
→
t

∑
→p i∈Pξk

∥∥R→
p i+

→
t −

→
q ck(i)

∥∥2
2
. (10)

For the scan pair with a certain degree of overlapping percentage, its opti-
mal rigid transformation can be computed by iterating these three steps until
some convergence criteria are satisfied. Then the rigid transformation can be
assembled into a relative motion.

3.3 Weighted motion averaging algorithm

Since the pair-wise registration can provide the relative motion and its cor-
responding weight, more effective motion averaging algorithm can be proposed
as follows.

3.3.1 Principle of the weighted motion averaging

Before proposing the weighted motion averaging algorithm, we firstly demon-
strate the averaging procedure that holds for all motions with corresponding
weight. Given a set of motions {M1,M2, . . . ,MN}, the corresponding weight
wi is assigned to each of them. To find their average motion M ∈ SE(3), we

can minimise the variational measure of
∑N
i=1 wid

2(Mi,M), where d(. . . , . . . )
is the Riemannian metric of Lie group. Based on [27], the procedure for esti-
mation the average motion M can be given as Algorithm 2:
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Algorithm 2: Averaging weighted motions

Input: {M1,M2, ... , MN} and {w1, w2, ... , wN}
Output: M

Set M = M1

Do

∆Mi = M
−1

Mi

∆mi = wilogm(∆Mi)

∆m =
∑N
i=1∆mi

/∑N
i=1 wi

∆M = expm(∆m)
M = M∆M

Untill ||∆m|| ≤ ε

Algorithm 2 can be extended to deal with the registration of multi-view range
scans.

3.3.2 The weighted motion averaging for multi-view registration

Previously, the motion average TrICP algorithm[29] has been proposed to
solve the multi-view registration problem. Given a set of relative motions, it
evenly distributes redundant information among all range scans involved in
multi-view registration. To handle each relative motion differently, each rel-
ative motion can be assigned to be with a weight, which allow us pay more
attention to accurate and reliable relative motions. Accordingly, the original
motion averaging algorithm should be extended to the weighted motion aver-
aging algorithm. As shown in 3, the goal of weighted motion averaging is to
recover the global motions from a set of weighted relative motions.

jM

ij ijw M jN jNw M

...1

iM

i j N... ...

NM

Fig. 3: The symbols involved in weighted motion averaging algorithm, where
one circle represents a range scan, Mij is the relative motion from the jth
scan to the ith scan and Mi denotes global motions required to be estimated,
wij indicates the weight of relative motion Mij

For each scan pair with a certain degree of overlapping percentage, the
relative motion and its corresponding weight has been estimated by the TrICP
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algorithm. Then Eq.(3) can be extended as:

wijMij = wij(Mi)
−1Mj , (11)

where the weight wij denotes the contribution of relative motion Mij in the
averaging process. Accordingly, the Lie algebra of Eq.(11) can be derived as:

wijmij ≈ wij(mj −mi). (12)

Accordingly, the matrix Dij can be assigned for each relative motion as follows:

Dij =
[
. . . −wijIij . . . wijIij . . .

]
, (13)

where the 6*6 identity matrices wij−Iij and wijIij are put into the position
of ith block and jth block, respectively. All these matrix can be stacked into
one matrix, which has the form:

D = [Dij1,Dij2, . . .Dijr]
T , (14)

where r denotes the number of participating range scan pairs. As stated in
the section 2, the operation v = mat2vec(m) is defined to extract parameters

from m to form a column wise vector v =
[
Ω21 Ω31 Ω32 u1 u2 u3

]T
. Similarly,

we can stack all these weighted vectors into one single vector and get the
formulation:

V = [wij1vij1, wij2vij2, . . . , wijrvijr]
T . (15)

Based on these derivations, the following equation can be acquired:

V = D=, (16)

where = = [v1,v2 · · ·vn]T and vi is a 6*1 vector composed of elements in mi.
Obviously, it is easy to obtain the result as follows:

= = D†V, (17)

where D† is the pseudo-inverse of D.

The above description results in the algorithm that can estimate the global
motions Mglobal from a set of weighted relative motions {wijr,Mijr}Rr=1. Al-
gorithm 3 summarizes the process of motion averaging for weighted relative
motions:
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Algorithm 3: The weighted motion averaging for multi-view registration

Input: Initial global motions M0
global

∆
=
{
I,M0

2, · · · ,M0
n

}
and a set of weighted relative motions {wijr,Mijr}Rr=1

Output: Global motions Mglobal
∆
= {I,M2, · · · ,MN}

Do
∆Mijm = M0

iMijm(M0
j )
−1

∆mijm = logm(∆Mijm)
∆vijm = mat2vec(∆mijm)
∆V = [wij1∆vij1, wij2∆vij2, . . . , wijr∆vijR]T

D = [Dij1,Dij2, . . . ,DijR]T

∆= = D†∆V
∆mk = vec2mat(∆=)
∀k ∈ [2, N ], Mk = e∆mkMk

Untill ‖∆=‖ < ε

where mat2vec(.) is defined to extract parameters from m to form a column
wise vector v and vec2mat(.) is defined to recover m using v.

3.4 Algorithm implementation

Based on the above description, we can present the approach for regis-
tration of multi-view range scans. It can achieve multi-view registration by
iterations. Given a set of initial global motions {I,M0

2, . . . ,M
0
N}, four steps

are included in each iteration:
(1) Compute the overlapping percentages for each range scan pair according

to the method presented in [29];
(2) Get initial parameters by Eq.(3), then apply the TrICP algorithm to

calculate the relative motion Mijr and its corresponding weight wijr for each
scan pair with overlapping percentage ξijr ≥ ξthr;

(3) According to algorithm 3, utilize {wijr,Mijr}Rr=1 to refine global mo-

tions Mglobal
∆
= {I,M2, · · · ,MN};

(4) Repeat steps (1)∼(3) until
∑n
i=1 ||∆Mi|| < δ, where δ is a preset thresh-

old.
By introducing the weighted motion averaging, the proposed approach can

effectively achieve good registration of multi-view range scans.

4 Experiments

To illustrate its good performance, the proposed approaches (WMAA) was
tested on Stanford repository [30] and the UWA 3D Modeling Dataset, where
seven range datasets were selected. They are the Bunny, Dragon, Happy Bud-
dha, Chicken, Parasaurolophus, Chef and Trex, which include 8, 10, 15, 15,
16, 22 and 21 range scans, respectively. As each raw data set includes huge
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number of points, the testing data sets are sampled from the raw data sets
with the sampling frequency set to be 8. During experiments, some parameters
were set as follows: λ = 2, ξmin = 0.3, ξthr = 0.4. All the competed approaches
adopted the nearest-neighbor search method based on k − d tree to establish
correspondences. Experiments were implemented in MATLAB and conducted
on a desktop with 3.6GHz processor of eight-cores and 8G RAM.

During experiments, the WMAA algorithm was compared with four ap-
proaches: the low-rank and sparse matrix decomposition (LRS-L1alm) [23],
the motion average TrICP (MATrICP) [29] and the coarse-to-fine TrICP ap-
proach (CFTrICP) [22]. Both LRS-L1a1m and MATrICP share the similar
framework with the WMAA algorithm. They utilize the pair-wise registration
to estimate the relative motions and adopt the corresponding algorithm to
recover the multi-view registration from the set of relative motions. Besides,
CFTrICP can obtain accurate results for multi-view registration and it is also
based on the pair-wise registration. Therefore, we compared the WMAA algo-
rithm with these related approaches.

4.1 Efficiency and accuracy

Since all these four approaches require the initial global motions, it only
needs to compare the runtime in multi-view registration step. For comparison
of different approaches, the objective function presented in [29] is adopted as
the error criterion for accuracy evaluation of multi-view registration results.
During the experiment, the same noise is added to the initial registration pa-
rameters obtained by Eq.(3). Accordingly, the four approaches can be applied
to registeration of multi-view range scans. For comparison, Table 1 records the
runtime and objective function value of the final registration result for all these
competed approaches, where the bold number denotes the best performance
among these competed approaches.

Table 1: Performance comparison among different approaches for different
shapes

LRS-L1alm CFTrICP MATrICP WMAA

Obj T(min) Obj T(min) Obj T(min) Obj T(min)
Bunny 0.6469 1.2000 0.7119 0.6145 0.6383 0.8753 0.6297 0.8272
Dragon 0.4410 1.3484 0.4063 0.7201 0.4420 0.7751 0.4140 0.5942
Happy 0.1371 4.9258 0.1389 5.4873 0.1349 2.5753 0.1331 2.5031

Chicken 4459.5128 28.8087 0.4264 2.9762 0.3831 1.9029 0.3734 1.7771
Trex 1.028 12.2773 0.2371 2.3224 0.2464 2.2839 0.2343 2.2800
Paras 3.4256 160.1035 0.3418 2.8764 0.3364 2.5810 0.3174 2.2441
Chef 32.438 59.2495 0.2331 25.1739 0.1892 12.1122 0.1850 11.9201

As shown in Table 1, the WMAA algorithm can obtain almost the best
performance in accuracy and efficiency among these approaches. This is be-
cause the WMAA algorithm can handle each relative motion differently. As
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(a) (b) (c) (d) (e) (f)

Fig. 4: Cross-section of multi-view registration results for four competed ap-
proaches. From the first to fourth rows are Stanford Bunny, Dragon, Happy
Buddha, Chicken and Parasaurolophus. (a) The 3D model obtained by the
WMAA algorithm; (b) Cross-section of initial model; (c)Cross-section of LRS-
L1alm; (d) Cross-section of CFTrICP; (e) Cross-Section of MATrICP; (f)
Cross-Section of WMAA

each relative motion is assigned with a weight, it allows us pay more attention
to accurate relative motions. Therefore, the WMAA algorithm can obtain the
most accurate multi-view registration results. What’s more, accurate multi-
view registration can provide the pair-wise registration with good initial pa-
rameters to obtain accurate and reliable relative motions, which can further
accelerate the multi-view registration. Subsequently, the WMAA algorithm is
more efficient than other competed approaches. Sometimes, the CFTrICP algo-
rithm many obtain the best performance among these competed approaches.
This is because the CFTrICP algroithm achieves multi-view registration by
minimizing the objective function presented in [22], it is reasonable to obtain
accurate results. Besides, both LRS-L1a1m and MATrICP handle each rela-
tive motion equally when they utilize these relative motions to estimate the
global motions. As each relative motion has different accuracy and reliability,
the equal treatment can not ensure accurate registration results, which may
increase the number of iteration to achieve muti-view registration. Therefore,
the WMAA algorithm has good performance for multi-view registration on
efficiency and accuracy.

To evaluate the registration accuracy in a more intuitive way, Fig. 4 illus-
trates the 3D model of Bunny, Dragon, Buddha, Chicken, Parasaurolophus,
and also provides the cross-section of the corresponding four competitive meth-
ods. As shown in Fig. 4, the WMAA algorithm can obtain the most efficient
and accurate registration results among these competed approaches. Given
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(a) (b) (c) (d) (e) (f)

Fig. 5: Cross-section of partially amplified the dragon and Parasaurolophus
model results for four competed approaches. (a) Cross-section of the initial
model; (b) Amplified cross-section of the initial model; (c)Amplified cross-
section of LRS-L1alm; (d) Amplified cross-section of CFTrICP; (e) Amplified
cross-Section of MATrICP; (f) Amplified cross-Section of WMAA

good initial global motions, all competed approaches can obtain satisfactory
results. However, without good initial global motions, they may be failed to
achieve good muti-view registration. This is because all these competed ap-
proaches are heavily dependent on initial global motions.

4.2 Robustness

To illustrate the robustness of the WMAA algorithm, all competed ap-
proaches were tested on Standford Bunny with varied initial parameters, which
can be obtained by adding the uniform noises to the initial global motions
{R0

2,R
0
3, . . . ,R

0
N}. In order to eliminate randomness, 50 MC trials were car-

ried out with respect to three noise levels for all competed approaches. For
comparison, Table 2 presents the mean value, standard deviation of objective
function and the mean runtime for these competed approaches, where the bold
number denotes the best performance among these competed approaches. To
view the registration results in a more intuitive way, Fig. 6 depicts the the ob-
jective function value of the registration results for all competed approaches
in each MC trial.

Table 2: Performance comparison of three approaches under varied noise levels

[-0.02,0.02]rad [-0.04,0.04]rad [-0.06,0.06]rad

Obj T(min) Obj T(min) Obj T(min)

Mean Std Mean Mean Std Mean Mean Std Mean

LRS-L1alm 0.6500 0.0047 1.5772 0.6513 0.0040 1.7477 1.0424 1.1452 3.4957
CFTrICP 0.6333 0.0161 1.0182 0.7201 0.0395 1.2277 0.7942 0.3358 1.3293
MATrICP 0.7163 0.0026 1.2829 0.6361 0.0046 1.0653 0.6426 0.0085 1.0268
WMAA 0.6298 0.0002 0.8802 0.6299 0.0009 0.9674 0.6317 0.0032 0.9538
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Fig. 6: The objective function value of the registration results for the competed
approaches in each MC trial, the sub-graphs (e) and (f) are the amplified
results of (c) and (d), respectively
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As displayed in Table 2 and Fig. 6 , the WMAA algorithm can get the
most accurate and robust registration results under different noise levels. Al-
though both the WMAA and MATrICP algorithm utilize the motion averaging
algorithm to achieve muti-view registration, they treat each relative motion
differently. In multi-view registration, each relative motions has different im-
portance due to the overlapping percentages of the corresponding scan pair.
Thanks for the introduction of the weight, which can allow the WMAA al-
gorithm pay more attention to the reliable relative motions so as to obtain
the accurate and robust registration results. While, the MATrICP algorithm
treat each relative motion equally, so it is difficult to obtain good registra-
tion results. To achieve multi-view registration, CFTrICP should adjust all
the registration parameters simultaneously, which can make it easy to trap
into local minimum. Hence, the robustness of CFTrICP is poor especial under
the high noise levels. Besides, the LRS-L1a1m algorithm adopts the low-rank
and sparse decomposition method to achieve multi-view registration. It only
allows some of relative motions are absent and may be failed due to the high
ratio of missing relative motions. In one words, the WMAA algorithm has the
superior performance for the registration of multi-view range scans.

5 Conclusion

This paper presents a novel approach for registration of multi-view range
scans. The main contribution is proposing the weighted motion averaging al-
gorithm, which can take into account the reliability and accuracy of each
motion obtained from the pair-wise registration. Since the reliability and ac-
curacy of the pair-wise registration results can be raised with the increase
of the overlapping percentage of scan pair, it then adopts the TrICP algo-
rithm to estimate the overlapping percentage and obtain the relative motion
of each scan pair with a certain degree of overlapping percentage. By viewing
the estimated overlapping percentages as weights, it can apply the weighted
motion averaging algorithm to achieve good registration of multi-view range
scans. Experimental results tested on several public datasets demonstrate that
the WMAA algorithm has superior performances in accuracy, robustness and
efficiency over the state-of-art approaches.

As this approach requires initial parameters for multi-view registration, our
future work will be committed to estimating the initial registration parameters.

6 Acknowledgments

This work is supported by the National Natural Science Foundation of
China under Grant nos. 61573273, 61573280 and 61503300.



Weighted Motion Averaging for the Registration of Multi-View Range Scans 17

References

1. Lu H, Li Y, Serikawa S, et al (2016) 3D underwater scene reconstruction through descat-
tering and colour correction. International Journal of Computational Science and Engi-
neering 12(4): 352-359

2. Yu N, Kihara K, Tadoh R, et al (2016) Super Resolving of the Depth Map for 3D
Reconstruction of Underwater Terrain Using Kinect. In: Proceedings of IEEE International
Conference on Parallel and Distributed Systems (ICPADS) 2016:1237-1240

3. Geng N, Ma F, Yang H, et al (2016) Neighboring constraint-based pairwise point cloud
registration algorithm. Multimedia Tools and Applications 75(24): 16763-16780

4. Held D, Thrun S, and Savarese S (2016) Robust single-view instance recognition. In:
Proceedings of IEEE International Conference on Robotics and Automation 2016:2152-
2159

5. Zhu J, Du SY, Ma L, Yuan ZJ, Zhang Q (2013) Merging Grid maps via point set regis-
tration, International Journal of Robotics and Automation, 28(2):180-191

6. Shiratori T, Berclaz J, Harville M et al (2015) Efficient large-scale point cloud registra-
tion using loop closures. In: Proceedings of International Conference on 3d Vision(3DV)
2015:232-240

7. Besl PJ,Mckay ND (2002) A method for registration of 3d shapes. IEEE Transactions
on Pattern Analysis and Machine Intelligence 14(2):239-256

8. Chetverikov D, Stepanov D, Krsek P (2005) Robust euclidean alignment of 3d point sets:
the trimmed iterative closest point algorithm. Image and Vision Computing 23(3):299-309

9. Rusinkiewicz S, Levoy M (2001) Efficient variants of the icp algorithm. In: Proceedings
of 3DIM 2001:145-152

10. Godin G, Rioux M, Baribeau R (1994) Three-dimensional registration using range and
intensity information. Proceedings of SPIE Volume 2350:279-290

11. Zhu J, Wang D, Bai XX et al (2016) Registration of Point Clouds Based on the Ratio
of Bidirectional Distances. In: Proceedings of 2016 Fourth International Conference on 3D
Vision (3DV) 2016:102-107

12. Jian B, Vemuri BC (2011) Robust point set registration using gaussian mixture models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8):1633-1645

13. Myronenko A, Song X (2006) Point set registration: Coherent point drift. Advances in
Neural Information Processing Systems 19(12):1009-1016

14. Tsin Y, Kanade T (2004) A correlation-based approach to robust point set registration.
In: Proceedings of European Conf. on Computer Vision(ECCV) 3023:558-569

15. Lomonosov E, Chetverikov D, Ekart A (2006) Preregistration of arbitrarily oriented 3d
surfaces using a genetic algorithm. Pattern Recognition Letters 27(11):1201-1208

16. Zhu J, Meng D, Li Z et al (2014) Robust registration of partially overlapping point sets
via genetic algorithm with growth operator. IET Image Processing 8(10):582-590

17. Lu H, Li Y, Xu X et al (2016) Underwater image enhancement method using weighted
guided trigonometric filtering and artificial light correction. Journal of Visual Communi-
cation and Image Representation 38:504-516

18. Chen Y , Medioni G (1992) Object modeling by registration of multiple range images.
IEEE International Conference on Robotics and Automation 10(3):145-155

19. Shi SW, Chuang YT, Yu TY (2009) An efficient and accurate method for the relaxation
of multiview registration error. IEEE Transactions on Image Processing A Publication of
the IEEE Signal Processing Society 17(6):968-981

20. Fantoni S, Castellani U, Fusiello A (2012) Accurate and automatic alignment of range
surfaces. In: Proceedings of Conference on 3D Imaging 2012:73-80

21. Guo YL, Sohel F, Bennamoun M et al (2014) An accurate and robust range image reg-
istration algorithm for 3D object modeling. IEEE Transactions on Multimedia 16(5):1377-
1390

22. Zhu J, Li Z, Du S, Ma L et al (2014) Surface reconstruction via efficient and accurate
registration of multiview range scans. Optical Engineering 53(10):2468-2468

23. Arrigoni F, Rossi B, Fusiello A (2016) Global Registration of 3D Point Sets via LRS
Decomposition. Computer Vision ECCV 2016:489-504

24. Arrigoni F, Magri L, Rossi B et al (2014) Robust absolute rotation estimation via low-
rank and sparse matrix decomposition. In: Proceedings of the International Conference
on 3D Vision (3DV) 2014:491-498



18 Rui Guo1 et al.

25. He J, Balzano L, Szlam A (2012) Incremental gradient on the Grassmannian for online
foreground and background separation in subsampled video. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition 2012:1568-1575

26. Zheng Y, Liu G, Sugimoto S (2012) Practical low-rank matrix approximation under
robust L1-norm. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition 2012:1410-1417

27. Govindu VM, Pooja A (2014) On averaging multiview relations for 3d scan registration.
IEEE Transactions on Image Processing 23(3):1289-1302

28. Govindu VM (2004) Lie-algebraic averaging for globally consistent motion estimation.
In:Proceedings of the IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition(CVPR) 2004:684-691

29. Li ZY, Zhu J, Lan K (2014) Improved Techniques for Multi-view Registration with
Motion Averaging. In:Proceedings of the International Conference on 3D Vision(3DV)
2014:713-719

30. Levoy M. The stanford 3d scanning repository, http://graphics.stanford.edu/data/3dscanrep/

http://graphics.stanford.edu/data/3dscanrep/

	1 Introduction
	2 Motion averaging
	3 The proposed multi-view registration approach
	4 Experiments
	5 Conclusion
	6 Acknowledgments

