Skip to main content
Log in

Object tracking using distribution fields with correlation coefficients

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A real-time object tracking method based on distribution field (DF) constructs with correlation coefficients is proposed to solve the drawbacks of local search and poor real-time performance exhibited by traditional DF tracking methods. With the goal of adapting to complex environments and changes in tracking speed, we propose an algorithm based on DFs and global searching by dense sampling. First, we use the DFs to construct an appearance model that functions as a target descriptor in the particle filter framework, allowing dynamic updating of the appearance model. Then, we measure the similarity using correlation coefficients based on fast Fourier transforms (FFTs) instead of the L1-norm of DFs to reduce the time complexity, overcome the drawback of randomness when using sparse sampling, and avoid falling into local optima from the gradient descent used in traditional DF methods. The results of experiments show that our proposed algorithm not only performs in real time but is also more robust for a variety of complex environments than those of six state-of-the-art algorithms on eight challenging video sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Babenko B, Ming-Hsuan Y, Belongie S (2011) Robust object tracking with online multiple instance learning. Patt Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  2. Baker S, Matthews I (2004) Lucas-Kanade 20 years on: a unifying framework. Int J Comput Vis 56(3):221–255

    Article  Google Scholar 

  3. Chenggang Y, Yongdong Z et al (2014) A Highly Parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21(5):573–576

    Article  Google Scholar 

  4. Chenggang Y, Yongdong Z et al (2014) Parallel deblocking filter for HEVC on many-core processor. Electron Lett 50(5):805–806

    Google Scholar 

  5. Chenggang Y, Yongdong Z, Feng D, Liang L (2013) Highly parallel framework for HEVC motion estimation on many-core platform. Data Compression Conference (DCC), Snowbird, UT, USA

  6. Collins RT (2003) Mean-shift blob tracking through scale space. Comp Vis Patt Recog 2:234–240

    Google Scholar 

  7. Doucet A, de Freitas N, Gordon N (eds) (2001) Sequential Monte Carlo methods in practice. Springer Verlag, New York

    MATH  Google Scholar 

  8. Gordon NJ, Salmond DJ, Smith AFM (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings 140(2):107–113

    Google Scholar 

  9. Grabner H, Grabner M, Bischof H (2006) Real-time tracking via on-line boosting. BMVC Conference 1:47–56

    Google Scholar 

  10. Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. Proc of European Conference on Computer Vision pp 234–247

  11. Hager GD, Dewan M, Stewart CV (2006) Multiple kernel tracking with SSD. Comp Vis Patt Recog 1:798–805

    Google Scholar 

  12. Han-xuan Y, Feng Z, Liang W, Zhan S, Ling S (2011) Recent advances and trends in visual tracking: a review. J Neurocompt 74(18):3823–3831

    Article  Google Scholar 

  13. Heideman MT, Johnson DH, Burrus CS (1984) Gauss and the history of the fast Fourier transform. IEEE ASSP Mag 1(4):14–21

    Article  MATH  Google Scholar 

  14. Huang G, Pun C-M, Lin C, Zhou Y (2016) Non-rigid visual object tracking using user-defined marker and Gaussian kernel. Multimed Tools Appl 75(10):5473–5492

    Article  Google Scholar 

  15. Ji-feng N, Lei Z, David Z, Chengke W (2012) Robust mean shift tracking with corrected background-weighted histogram. Comp Vis 6(1):62–69

    MathSciNet  Google Scholar 

  16. Kaihua Z, Huihui S (2013) Real-time visual tracking via online weighted multiple instance learning. Pattern Recogn 46(1):397–411

    Article  MATH  Google Scholar 

  17. Kai-hua Z, Hui-hui S (2013) Real-time visual tracking via on-line weighted multiple instance learning. Pattern Recogn 46(1):397–411

    Article  Google Scholar 

  18. Kaihua Z, Lei Z, Ming-Hsuan Y (2012) Real-time compressive tracking. Eur Conf Comput Vision 3:864–877

    Google Scholar 

  19. Kai-hua Z, Lei Z, Ming-hsuan Y (2012) Real-time compressive tracking. Proc of European Conference on Computer Vision pp 864–877

  20. Khenouchi H, et al (2016) The Modulus of the Complex Correlation Coefficient Between Co-Polarized Channels for Oil Spill Observation. Living Planet Symposium 740

  21. Kitagawa G (1996) Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J Comput Graph Stat 5(1):1–25

    MathSciNet  Google Scholar 

  22. Koutra D et al (2016) D elta C on: principled massive-graph similarity function with attribution. ACM Transactions on Knowledge Discovery from Data (TKDD) 10.3:28

    Google Scholar 

  23. Lin C, Pun C-M, Huang G (2016) Highly non-rigid video object tracking using segment-based object candidates. Multimedia Tools and Applications 76(7):9565–9586

  24. Liu JS, Chen R (1998) Sequential Monte Carlo methods for dynamic systems. J Am Stat Assoc 93(443):1032–1044

    Article  MathSciNet  MATH  Google Scholar 

  25. Maggio E, Cavallaro A (2010) Video tracking: Theroy and practice. John Wiley and Sons, London, pp 15–16

    Book  Google Scholar 

  26. Saffari A, Leistner C, Santner J, Godec M, Bischof H (2009) On-line random forests. Proc of International Conference on Computer Vision pp 1393–1400

  27. Sanjeev Arulampalam M, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188

    Article  Google Scholar 

  28. Sevilla-Lara L, Learned-Miller E (2012) Distribution fields for tracking. Comp Vis Patt Recog 34:1910–1917

    Google Scholar 

  29. Tang A, Scalzo F (2016) Similarity Metric Learning for 2D to 3D Registration of Brain Vasculature. International Symposium on Visual Computing. Springer International Publishing

  30. Viola P, Jones M (2001) Rapid object detection using a boosted Cascade of simple features. Comp Vis Patt Recog 1:511–518

    Google Scholar 

  31. Wang J, et al (2016) Optimizing top precision performance measure of content-based image retrieval by learning similarity function. arXiv preprint arXiv:1604.06620

  32. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. Journal of ACM Computing Surveys(CSUR) 38(4):13

    Article  Google Scholar 

  33. Yu X, Xiaojun W, Hongyuan W (2012) Object tracking algorithm based on partial feature combination. Opto-Electron Eng 39(7):67–74

    Google Scholar 

  34. Yuan X, Yan-yun Q, Cui-hua L (2012) Online multiple instance gradient feature selection for robust visual tracking. Pattern Recogn Lett 39(9):1075–1082

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the Research Committee of the University of Macau (MYRG2015-00011-FST, MYRG2015-00012-FST) and the Science and Technology Development Fund of Macau SAR (093-2014-A2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Man Pun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, P., Pun, CM. Object tracking using distribution fields with correlation coefficients. Multimed Tools Appl 77, 8979–9002 (2018). https://doi.org/10.1007/s11042-017-4790-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4790-y

Keywords

Navigation