Skip to main content
Log in

An efficient lossless robust watermarking scheme by integrating redistributed invariant wavelet and fractional Fourier transforms

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

An ensemble lossless watermarking scheme is proposed in the present study by integrating different concepts like redistributed invariant wavelet transform, discrete fractional Fourier transform, singular value decomposition (SVD) and visual cryptography within the framework of a single algorithm. The invariant wavelet transform helps to obtain the transform domain, which is invariant to flipping and rotation of image, this is followed by discrete fractional Fourier transform to obtain the translation invariant domain. Finally, embedding positions are selected based on a key and reliable features are extracted by performing SVD on a window centered at these positions. Based on these reliable features a binary map is generated through which a master share is created. The corresponding ownership share is produced from the master share and the watermark. In verification process the same operations of the embedding process are applied to the test image to obtain the master share and the watermark is recovered by stacking it over the ownership share. There are two main features of the proposed scheme (1) The quality of the image to be watermarked do not degrade during the process and (2) the extracted watermark can still be identified even from a seriously distorted image. These findings are also demonstrated with the help of a comparative study with several related schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ali M, Ahn CW (2014) An optimized watermarking technique based on self-adaptive DE in DWT–SVD transform domain. Signal Process 94:545–556

    Article  Google Scholar 

  2. Ali M, Ahn CW, Pant M (2014) A robust image watermarking technique using SVD and differential evolution in DCT domain. Optik-Int Journal of Light and Electron Optics 125(1):428–434

    Article  Google Scholar 

  3. Ali M, Ahn CW, Siarry P (2014) Differential evolution algorithm for the selection of optimal scaling factors in image watermarking. Eng Appl Artif Intell 31:15–26

    Article  Google Scholar 

  4. Ali M, Ahn CW, Millie P, Siarry P (2015) An image watermarking scheme in wavelet domain with optimized compensation of singular value decomposition via artificial bee colony. Information Science 301:44–60

    Article  Google Scholar 

  5. Bhatnagar G, Jonathan WQM (2013) Biometrics inspired watermarking based on a fractional dual tree complex wavelet transform. Futur Gener Comput Syst 29(1):182–195

    Article  Google Scholar 

  6. Candan C, Kutay MA, Ozaktas HM (2000) The discrete fractional Fourier transform. IEEE Trans Signal Process 48(5):1329–1337. doi:10.1109/78.839980

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen T-H, Chang C-C, Wu C-S, Lou D-C (2009) On the security of a copyright protection scheme based on visual cryptography. Computer Standards and Interfaces 31(1):1–5

    Article  Google Scholar 

  8. Cox IJ, Kilian J, Leighton FT, Shamoon T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6(12):1673–1687. doi:10.1109/83.650120

    Article  Google Scholar 

  9. Cox I, Miller ML, Bloom JA (2001) Digital Watermarking. Morgan Kaufmann Publishers Inc.

  10. Gao L, Qi L, Wang Y, Chen E, Yang S, Guan L (2012) Rotation invariance in 2D-FRFT with application to digital image watermarking. Journal of Signal Processing Systems 72(2):133–148. doi:10.1007/s11265-012-0722-2

    Article  Google Scholar 

  11. García S, Molina D, Lozano M, Herrera F (2008) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. Journal Heuristics 15(6):617–644. doi:10.1007/s10732-008-9080-4

    Article  MATH  Google Scholar 

  12. Gu Q, Gao T (2013) A novel reversible robust watermarking algorithm based on chaotic system. Digit Signal Processing 23(1):213–217

    Article  MathSciNet  Google Scholar 

  13. Gu B, Sheng VS (2016) A robust regularization path algorithm for ν-support vector classification. IEEE Transactions On Neural Networks And Learning Systems 5(99):1–8

    Google Scholar 

  14. Hussein E, Belal MA (2012) Digital watermarking techniques, applications and attacks applied to digital media: a survey. Int Journal of Engineering Research and Technology 1(7):1–8

    Google Scholar 

  15. Li L, Xu H-H, Chang C-C, Ma Y-Y (2011) A novel image watermarking in redistributed invariant wavelet domain. J Syst Softw 84(6):923–929

    Article  Google Scholar 

  16. Liao X, Shu C (2015) Reversible data hiding in encrypted images based on absolute mean difference of multiple neighboring pixels. J Vis Commun Image R 28:21–27

    Article  Google Scholar 

  17. Liao X, Li K, Yin J (2016) Separable data hiding in encrypted image based on compressive sensing and discrete Fourier transform. Multimedia Tools and Applications. doi:10.1007/s11042-016-3971-4

  18. Liu R, Tan T (2002) An SVD-based watermarking scheme for protecting rightful ownership. IEEE Transactions on Multimedia 4(1):121–128. doi:10.1109/6046.985560

    Article  Google Scholar 

  19. Lou D-C, Tso H-K, Liu J-L (2007) A copyright protection scheme for digital images using visual cryptography technique. Computer Standards and Interfaces. 29(1):125–131

    Article  Google Scholar 

  20. Maity SP, Maity S, Sil J, Delpha C (2013) Collusion resilient spread spectrum watermarking in M-band wavelets using GA-fuzzy hybridization. J Syst Softw 86(1):47–59

    Article  Google Scholar 

  21. Makbol NM, Khoo BE (2013) Robust blind image watermarking scheme based on redundant discrete wavelet transform and singular value decomposition. AEU-Int Journal Electronics Communications 67(2):102–112. doi:10.1016/j.aeue.2012.06.008

    Article  Google Scholar 

  22. Naor M, Shamir A (1995) Visual cryptography. In: Santis A (ed) Advances in cryptology — EUROCRYPT’94, vol 950. Springer-Verlag, Berlin/Heidelberg, pp 1–12. doi:10.1007/BFb0053418

    Google Scholar 

  23. Ozaktas HM, Arikan O, Kutay MA, Bozdagt G (1996) Digital computation of the fractional Fourier transform. IEEE Trans Signal Process 44(9):2141–2150. doi:10.1109/78.536672

    Article  Google Scholar 

  24. Pei S-C, Yeh M-H (1998) Two dimensional discrete fractional Fourier transform. Signal Process 67(1):99–108

    Article  MATH  Google Scholar 

  25. Pei S-C, Yeh M-H, Tseng C-C (1999) Discrete fractional Fourier transform based on orthogonal projections. IEEE Trans Signal Process 47(5):1335–1348. doi:10.1109/78.757221

    Article  MathSciNet  MATH  Google Scholar 

  26. Rawat S, Raman B (2012) A blind watermarking algorithm based on fractional Fourier transform and visual cryptography. Signal Process 92(6):1480–1491. doi:10.1016/j.sigpro.2011.12.006

    Article  Google Scholar 

  27. Sejdić E, Djurović I (2011) Stanković, L.j. Fractional Fourier transform as a signal processing tool: an overview of recent developments. Signal Process 91(6):1351–1369

    Article  MATH  Google Scholar 

  28. Sheskin DJ (2003) Handbook of Parametric and Nonparametric Statistical Procedures, (3rd edition). London: Taylor & Francis

  29. Su Q, Niu Y, Zou H, Liu X (2013) A blind dual color images watermarking based on singular value decomposition. Appl Math Comput 219(16):8455–8466. doi:10.1016/j.amc.2013.03.013

    MathSciNet  MATH  Google Scholar 

  30. Su Q, Niu Y, Wang G, Jia S, Yue J (2014) Color image blind watermarking scheme based on QR decomposition. Signal Process 94:219–235

    Article  Google Scholar 

  31. Tsai H-H, Tseng H-C, Lai Y-S (2010) Robust lossless image watermarking based on α-trimmed mean algorithm and support vector machine. J Syst Softw 83(6):1015–1028

    Article  Google Scholar 

  32. Tsai H-H, Lai Y-S, Lo S-C (2013) A zero-watermark scheme with geometrical invariants using SVM and PSO against geometrical attacks for image protection. J Syst Softw 86(2):335–348

    Article  Google Scholar 

  33. Wang M-S, Chen W-C (2009) A hybrid DWT-SVD copyright protection scheme based on k-means clustering and visual cryptography. Computer Standards and Interfaces. 31(4):757–762. doi:10.1016/j.csi.2008.09.003

    Article  Google Scholar 

  34. Wang X-Y, Yang Y-P, Yang H-Y (2010) Invariant image watermarking using multi-scale Harris detector and wavelet moments. Comput Electr Eng 36(1):31–44

    Article  MATH  Google Scholar 

  35. Wu X, Sun W (2013) Robust copyright protection scheme for digital images using overlapping DCT and SVD. Appl Soft Comput 13(2):1170–1182. doi:10.1016/j.asoc.2012.09.028

    Article  Google Scholar 

  36. Zheng Y, Jeon B, Xu D, Wu QMJ, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. Journal of Intelligent & Fuzzy Systems 28:961–973

    Google Scholar 

Download references

Acknowledgements

This research was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No.B0717-17-0070). It was also supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A02062017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Wook Ahn.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Ahn, C.W. & Pant, M. An efficient lossless robust watermarking scheme by integrating redistributed invariant wavelet and fractional Fourier transforms. Multimed Tools Appl 77, 11751–11773 (2018). https://doi.org/10.1007/s11042-017-4815-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4815-6

Keywords

Navigation