Skip to main content
Log in

Scene image classification using locality-constrained linear coding based on histogram intersection

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recently linear Spatial Pyramid Matching (SPM) method based on sparse coding has achieved great success in image classification. The raise of Locality-constrained Linear Coding (LLC) proves the importance of locality. In this paper, we propose an improved feature coding scheme called Locality-constrained Linear Coding Based on Histogram Intersection (HILLC). HILLC uses histogram intersection to describe the distance between feature vector and codebook. For each feature vector, search the KNN nearest neighbors to construct a local codebook. Compared with LLC, HILLC can obtain more robust codes. Experimental results demonstrate that our proposed method outperforms other related coding methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aharon M, Elad M (2006) Bruckstein The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322

    Article  MATH  Google Scholar 

  2. Ahonen T, Hadid A, Pietikainen M (2004) Face recognition with local binary patterns. ECCV, pp:469–481

  3. Barla A, Odone F, Verri A (2003) Histogram intersection kernel for image classification. International Conference on Image Processing, 3(2): III-513-16.

  4. Bin G, Victor S (2015) Sheng, Zhijie Wang, Derek Ho, Said Osman, and Shuo Li. Incremental learning for v-Support Vector Regression Neural Networks 67:140–150. doi:10.1016/j.neunet.2015.03.013

    Article  Google Scholar 

  5. Bin G, Victor S, Sheng KYT, Romano W, Li S (2015) Incremental support vector learning for ordinal regression. IEEE Transactions on Neural Networks and Learning Systems 26(7):1403–1416. doi:10.1109/TNNLS.20142342533

    Article  MathSciNet  Google Scholar 

  6. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on computational learning theory, pp. 144-152

  7. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines [EB/OL] http://www.csie.ntu.edu.tw/~cjlin/libsvm

  8. Chen Y (2016) Wavelet energy entropy and linear regression classifier for detecting abnormal breasts. Multimedia Tools and Applications. doi:10.1007/s11042-016-4161-0 (Online)

  9. Chen Y, Ma J, Feng Q, Luo L, Shi P, Chen W (2008) Nonlocal prior Bayesian tomographic reconstruction. J Math Imaging and Vision 30(2):133–146

    Article  Google Scholar 

  10. Chen Y, Shi L, Feng Q, Yang J, Shu H, Luo L, Coatrieux J-L, Chen W (2014) Artifact suppressed dictionary learning for low-dose ct image processing. IEEE, Trans Med Imaging 33(12):2271–2292

    Article  Google Scholar 

  11. Chen Y, Zhang Y, Yang J, Cao Q, Yang G, Chen J, Shu H, Luo L, Coatrieux J, Feng Q (2016) Curve-like structure extraction using minimal path propagation with backtracking. IEEE, Trans Image Process 25(2):988–1003

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen MM, Li Y et al (2016) Morphological analysis of dendrites and spines by hybridization of ridge detection with twin support vector machine. Peer J 4:e2207

    Article  Google Scholar 

  13. Dong Z et al (2015) Magnetic Resonance brain image classification via stationary wavelet Transform and generalized eigenvalue proximal support vector machine. J Med Imaging Health Informatics 5(7):1395–1403

    Article  Google Scholar 

  14. Fei-Fei L, Perona P (2005) A bayesian hierarchical model for learning natural scene categories. IEEE Computer Vision and Pattern Recognition. New York: IEEE, 524–531

  15. Gu B (2015) Et. Al, Incremental learning for ν-support vector regression. Neural Netw 67:140–150

    Article  Google Scholar 

  16. Gu B, Sheng VS (2016) A robust regularization path algorithm for ν-support vector classification, IEEE Transactions on Neural Networks and Learning Systems, doi: 10.1109/TNNLS.2016.2527796

    Article  Google Scholar 

  17. Hartigan JA, Wong MA (1979) Algorithm AS 136: a k-means clustering algorithm. Appl Stat 28(1):100–108

    Article  MATH  Google Scholar 

  18. Hornik K (1991) Approximation capabilities of feedforward networks. Neural Netw:251–257

  19. Huang SM, Yang JF (2012) Kernel linear regression for low resolution face recognition under variable illumination, in: IEEE International Conf. on Acoustics, Speech and Signal Processing(ICASP), PP. 1945–1948

  20. Huang SM, Yang JF (2012) Improved principal component regression for face recognition under illumination variations. IEEE Signal Process. Lett. 19(4):179–182

    Article  Google Scholar 

  21. Huang SM, Yang JF (2013) Linear discriminant regression classification for face recognition. IEEE Signal Process Lett 20(1):91–94

    Article  Google Scholar 

  22. Huang SM, Yang JF (2013) Unitary regression classification with total minimum projection error for face recognition. IEEE Signal Process. Lett. 20(5):443–446

    Article  MathSciNet  Google Scholar 

  23. Huang GB, Zhu QY, Slew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501

    Article  Google Scholar 

  24. Huang GB, Ding XJ, Zhou HM (2010) Optimization method based on extreme learning machine for classification. Neurocomputing 74:155–163

    Article  Google Scholar 

  25. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. IEEE Computer Society Conference on Computer Vision and Pattern Recognition New York, 2169–2178

  26. Lee H, Battle A, Raina R et al (2006) Efficient sparse coding algorithms. Adv Neural Inf Proces Syst:801–808

  27. Leshno M, Lin VY, Pinkus A, Schocken S (1993) Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw (6):861–867

    Article  Google Scholar 

  28. Li LJ, Fei- Fei L (2007) What, where and who? Classifying events by scene and object recognition, Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on. IEEE, 1–8

  29. Li C-H, Kuo B-C, Lin C-T, Huang C-S (2012) A spatial-contextual support vector machine for remotely sensed image classification. IEEE Trans. Geosci. Remote Sens 50(3):784–799

    Article  Google Scholar 

  30. Li Y, Shao Y, Cattani C (2017) Detection of dendritic spines using wavelet packet entropy and fuzzy support vector machine. CNS Neurol Disord Drug Targets 16(2):116–121

    Article  Google Scholar 

  31. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  32. Lu S Y, Yang J Q (2016) Dual-tree complex wavelet transform and twin support vector machine for pathological brain detection, Appl Sci, 6(6), Article ID: 169

  33. Moustakidis S, Mallinis G, Koutsias N, Theocharis JB, Petridis V (2012) SVM-based fuzzy decision trees for classification of high spatial resolution remote sensing images. IEEE Trans. Geosci, Remote Sens 50(1):149–169

    Article  Google Scholar 

  34. Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112

    Article  Google Scholar 

  35. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    Article  MATH  Google Scholar 

  36. Samaria F, Harter A (1994) Parameterisation of a Stochastic Model for Human Face Identification. Proceedings of 2nd IEEE Workshop on Applications of Computer Vision, Sarasota FL, December 1994

  37. Shen F, Tang Z, Jingsong X (2013) Locality constrained representation based classification with spatial pyramid patches. Nenurocomputing 101:104–115

    Article  Google Scholar 

  38. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  39. Wang S (2014) Classification of Alzheimer disease based on structural Magnetic Resonance Imaging by kernel support vector machine decision tree. Prog Electromagn Res - Pier 144:185–191

    Article  Google Scholar 

  40. Wang Q (2016) J, Lin, Y. Yuan Salient band selection for hyperspectral image classification via manifold ranking IEEE Trans Neural Netw Learn Syst 27(6):1279–1289

    Google Scholar 

  41. Wang SH, Du SD (2017) Alzheimer’s disease detection by pseudo Zernike moment and linear regression classification. CNS Neurol Disord Drug Targets 16(1):11–15

    Article  MathSciNet  Google Scholar 

  42. Wang S, Yang XJ (2015) Identification of green, oolong and black teas in China via wavelet packet entropy and fuzzy support vector machine. Entropy 17(10):6663–6682

    Article  MathSciNet  Google Scholar 

  43. Wang J, Yang J, Yu K et al (2010) Locality-constrained linear coding for image classification. Computer Vision and Pattern Recognition (CVPR), 2010 I.E. Conference on. IEEE: 3360–3367

  44. Wen X (2015) Et. Al, A rapid learning algorithm for vehicle classification. Inf Sci 295(1):395–406

    Article  Google Scholar 

  45. Yang J, Yu K, Gong Y, et al (2009) Linear spatial pyramid matching using sparse coding for image classification. Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on IEEE: 1794–1801

  46. Yang W, Wang Z, Sun C (2015) A collaborative representation based projections method for feature extraction. Pattern Recogn 48(1):20–27

    Article  Google Scholar 

  47. Yang W, Wang Z, Zhang B (2016) Face recognition using adaptive local ternary patterns method. Neurocomputing 213:183–190

    Article  Google Scholar 

  48. Yang W, Sun C, Zheng W (2016) A regularized Least Square based discriminative projections for feature extraction, Neurocomputing, 175: 198-205(2016.1)

    Article  Google Scholar 

  49. Yang ZJ, Lu HM et al (2016) Facial emotion recognition based on biorthogonal wavelet entropy, fuzzy support vector machine, and stratified cross validation. IEEE Access 4:8375–8385

    Article  Google Scholar 

  50. Yang W, Sun C, Zheng W, Ricanek K (2017) Gender classification using 3D statistical models. Multimedia Tools and Appl 76(3):4491–4503

    Article  Google Scholar 

  51. Yu K, Zhang T, Gong Y (2009) Efficient sparse coding algorithms. Adv Neural Inf Proces Syst:2223–2231

  52. Yu K, Zhang T, Gong Y (2009) Nonlinear learning using local coordinate coding. Adv Neural Inf Proces Syst:2223–2231

  53. Zhang L, Zhang D (2016) Evolutionary cost-sensitive extreme learning machine. IEEE Trans. Neural Netw. Learn. Syst. doi:10.1109/TNNLS.2016.2607757

    Article  MathSciNet  Google Scholar 

  54. Zhang Y et al (2015) Preclinical diagnosis of Magnetic Resonance (MR) brain images via discrete wavelet packet Transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM). Entropy 17(4):1795–1813

    Article  Google Scholar 

  55. Zhang YD et al (2015) Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine, SpringerPlus, 4, Article ID: 716

  56. Zhang YD, Zhang Y et al (2017) Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed. Multimedia Tools and Applications. doi:10.1007/s11042-017-4554-8 (Online)

  57. Zhou XX, Yang M (2016) Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: decision tree, k-nearest neighbors, and support vector machine. Simulation 92(9):861–871

    Article  Google Scholar 

  58. Zhou Z, Wang Y, Jonathan Wu Qm, Yang C, Sun X (2017) Effective and efficient global context verification for image copy detection. IEEE Trans Inf Forensies and Secur 12(1):48–63

    Article  Google Scholar 

Download references

Acknowledgements

This project is partly supported by NSF of China (61202134, 31671006), the Natural Science Foundation of Jiangsu Province (No.BK20140638, BK2012437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Xie, K., Wang, H. et al. Scene image classification using locality-constrained linear coding based on histogram intersection. Multimed Tools Appl 77, 4081–4092 (2018). https://doi.org/10.1007/s11042-017-4830-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4830-7

Keywords

Navigation