Skip to main content
Log in

Shape retrieval through normalized B-splines curves

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a new technique for 2D shape modeling and retrieval based only on curves defined from shape boundary. Firstly, a shape representation system is build based on the decomposition of the outline into its constituent parts and their geometric description. The process decomposition is done using high curvature points located along the boundary. These obtained parts are then described by parametric curves using the B-spline approximation and normalized in order to eliminate scaling transformation. Finally, the resulting curves allow matching of shapes and retrieving that is robust to rotation, scale change and deformation. Experiments conducted on a variety of shape databases including Kimia-99, Kimia-216, MPEG-7 and our database created from a selection of ETH-80 shape database, illustrate the performance of the proposed approach when compared with existing algorithms in literature. Obtained results are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Adamek T, O’Connor NE (2004) A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Trans Circuits Syst Video Technol 14(5):742–754

    Article  Google Scholar 

  2. Alajlan N (2010) Fast shape matching and retrieval based on approximate dynamic space warping. Artificial Life and Robotics Journal 15:309–315

    Article  Google Scholar 

  3. Andal FA, Miranda PAV, Torres RD, Falco AX (2010) Shape feature extraction and description based on tensor scale. Pattern Recogn 43:26–36

    Article  Google Scholar 

  4. Argawal S, Awan A, Roth D (2004) Learning to detect objects in images via a sparse part-base representation. IEEE TPAMI 26(11):1475–1490

    Article  Google Scholar 

  5. Arica N, Vural FTY (2003) BAS: a perceptual shape descriptor based on the beam angle statistics. Pattern Recogn Lett 24(9–10):1627–1639

    Article  MATH  Google Scholar 

  6. Bai X, Yang X, Latecki LJ, Liu W, Tu Z (2010) Learning context-sensitive shape similarity by graph transduction. IEEE Trans Pattern Anal Mach Intell, PAMI 32(5):861–874

    Article  Google Scholar 

  7. Carmona-poyato A, Madrid-Cuevas FJ, Medina-Carnicer R, Munoz-Salinas R (2010) Polygonal approximation of digital planar curves through break point suppression. Pattern Recogn 43(1):209–216

    Article  MATH  Google Scholar 

  8. Chen X, Ma W, Paul J (2010) Cubic B-spline curve approximation by curve unclamping. Comput Aided Des 42(6):523–534

    Article  Google Scholar 

  9. Chetvericov D (2003) A Simple and efficient algorithm for detection of high curvature points in planar curves. In: 10th International Conference, CAIP, pp 1501–1504

  10. Cohen FS, Huang Z, Yang Z (1995) Invariant matching and identification of curves using B- spline curve representation. IEEE Trans Image Process 4(1):1–10

    Article  Google Scholar 

  11. Daliri MR, Torre V (2010) Classification of silhouettes using contour fragments. Comput Vis Image Underst 113(9):1017–1025

    Article  Google Scholar 

  12. Direkoglu C, Nixon MS (2011) Shape classification via image-based multiscale description. Pattern Recogn 44(9):2134–2146

    Article  Google Scholar 

  13. Ebrahim Y, Ahmed M, Abdelsalam W, Chau SC (2009) Shape representation and description using the Hilbert curve. Pattern Recogn Lett 30:348–358

    Article  Google Scholar 

  14. El-Rube I, Kamel M, Ahmed M (2004) Wavelet-based affine invariant shape matching and classification. ICIP Internat Conf on Image Processing, Singapore

    Google Scholar 

  15. Graham RL (1972) An efficient algorithm for determining the convex hull of a finite planar set. Inf Process Lett 1:132–133

    Article  MATH  Google Scholar 

  16. Gu Y, Tjahjadi T (2000) Coarse-to-fine planar object identification using invariant curve features and B-spline modeling. Pattern Recogn 33(9):1411–1422

    Article  MATH  Google Scholar 

  17. Hayward WG (1998) Effects of outline shape in object recognition. J Exp Psychol Hum Percept Perform 24:427–440

    Article  Google Scholar 

  18. Hu RX, Jia W, Zhang D, Gui J, Song LT (2012) Hand shape recognition based on coherent distance shape contexts. Pattern Recogn 45:3348–3359

    Article  Google Scholar 

  19. Ion A, Artner NM, Peyré G, Kropatsch WG, Cohen LD (2011) Matching 2D and 3D articulated shapes using the eccentricity transform. Comput Vis Image Underst 115:817–834

    Article  Google Scholar 

  20. Juhasz I, Roth A (2013) A class of generalized B-spline curves. Comput Aided Geom Des 30:85–115

    Article  MathSciNet  MATH  Google Scholar 

  21. Klette R, Zunic J (2012) Distance between shape centroids versus shape diameter. Comput Vis Image Underst 116:690–697

    Article  Google Scholar 

  22. Krishnamoorthy R, Sathiya Devi S (2013) Image retrieval using edge based shape similarity with multiresolution enhanced orthogonal polynomials model. Digital Signal Process 23:555–568

    Article  MathSciNet  Google Scholar 

  23. Laiche N, Larabi S (2011) Retrieval of 2D objects and shape matching using the B-spline representation. In: IEEE International Conference on Signal and Image Processing Applications, ICSIPA, pp 495–500

  24. Laiche N, Larabi S (2014) 2D shape matching based on B-spline curves and dynamic programming. In: VISAPP 2014, 9th International Conference on Computer Vision Theory and Applications, pp 484–491

  25. Latecki LJ, Lakamper R (2000) Shape similarity measure based on correspondence of visual parts. IEEE TPAMI 22(10):1182–1190

    Article  Google Scholar 

  26. Latecki LJ, Lakamper R, Eckhardt U (2000) Shape descriptors for non-rigid shapes with a single closed contour. In: Computer Vision and Pattern Recognition CVPR 2000, pp 1424–1429

  27. Leibe B, Scheille B (2003) Analyzing appearance and contour based methods for object categorization. International Conference on Computer Vision and Pattern Recognition, Madison

    Book  Google Scholar 

  28. Li Z, Kuang Z, Liu Y, Wang J (2016) Multiscale shape context and re-ranking for deformable shape retrieval. Comput Graph 54:8–17

    Article  Google Scholar 

  29. Ling H, Jacobs DW (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell 29(2):286–299

    Article  Google Scholar 

  30. Liu YK, Wei W, Wang PJ, Zalik B (2008) Compressed vertex chain codes. Pattern Recogn 40(11):2908–2913

    Article  MATH  Google Scholar 

  31. Lu Y, Lien J-M, Ghosh M, Amato NM (2012) α-decomposition of polygons. Comput Graph 36:466–476

    Article  Google Scholar 

  32. Ma Z, Zhang Z, Yang L (2011) Shape feature descriptor using modified Zernike moments. Pattern Anal Applic 14:9–22

    Article  MathSciNet  Google Scholar 

  33. Mokhtarian F, Abbasi S, Kittler J (1996) Efficient and robust retrieval by shape content through curvature scale space. In: International Workshop on Image Databases and Multimedia Search, pp 35–42

  34. Mongkolnam P, Nukoolkit C, Dechsakulthorn T (2007) Represent image contents using curves and chain code. In: IAPR Conference on Machine and Vision Applications, MVA, pp 355–358

  35. Mori G, Belongie S, Malik J (2004) Efficient shape matching using shape contexts. IEEE Trans Pattern Anal Mach Intell 27(11):1832–1837

    Article  MATH  Google Scholar 

  36. Nanni L, Braham S, Lumini A (2012) Local phase quantization descriptor for improving shape retrieval/classification. Pattern Recogn Lett 33(16):2254–2260

    Article  Google Scholar 

  37. Niblack PB, Gibbons CW, Capson DW (1992) Generating skeletons and centerlines from the distance transform. CVGIP, Graphical Models and Image Processing 54(5):420–437

    Article  Google Scholar 

  38. Park H, Lee J-H (2007) B-spline curve fitting based on adaptive curve refinement using dominant points. Comput Aided Des 39:439–451

    Article  Google Scholar 

  39. Pedrosa GV, Batista MA, Barcelos CAZ (2013) Image feature descriptor based on shape salience points. Neurocomputing 120:156–163

    Article  Google Scholar 

  40. Piegl L, Tiller W (1997) The NURBS book. Springer, Berlin

    Book  MATH  Google Scholar 

  41. Rivlin E, Weiss I (1995) Local invariants for recognition. IEEE Trans Pattern Anal Mach Intell 17(3):226–238

    Article  Google Scholar 

  42. Sebastian TB, Klein PN, Kimia BB (2004) Recognition of shapes by editing their shock graphs. IEEE Trans Pattern Anal Mach Intell 26:550–571

    Article  Google Scholar 

  43. Shi Y, Wang G, Wang R, Zhu A (2013) Contour descriptor based on space symmetry. Optik 124:6149–6153

    Article  Google Scholar 

  44. Wang W, Pottmann H, Liu Y (2006) Y, fitting B-spline curves to point clouds by curvature-based squared distance minimization. ACM Trans Graph 25(2):214–238

    Article  Google Scholar 

  45. Wang J, Bai X, You X, Liu W, Latecki LJ (2012) Shape matching and classification using height functions. Pattern Recogn Lett 33:134–143

    Article  Google Scholar 

  46. Yang H, Wang W, Sun J (2004) Control point adjustment for B-spline curve approximation. Comput Aided Des 36:639–652

    Article  Google Scholar 

  47. Yang GY, Shu HZ, Toumoulin C, Han GN, Luo LM (2006) Efficient Legendre moments computation for grey level images. Pattern Recogn 39(1):74–80

    Article  Google Scholar 

  48. Yang J, Wang H, Yuan J, Li Y, Liu J (2016) Invariant multi-scale descriptor for shape representation, matching and retrieval. Comput Vis Image Underst 145:43–58

    Article  Google Scholar 

  49. Zaletelj J, Pecci R, Spaan F, Hanjalic A, Lagendijk RL (1998) Rate distortion optimal contour using cubic B-spline. European Signal Processing Conference 9:1501–1504

    Google Scholar 

  50. Zhang DS, Lu G (2002) Generic Fourier descriptor for shape-based image retrieval. In: ICME: IEEE. International Conference on Multimedia and Expo, pp 425–428

  51. Zunic J, Aktas MA, Ortiz CM, Galton A (2011) The distance between shape centroids is less than a quarter of the shape perimeter. Pattern Recogn 44:2161–2169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nacéra Laiche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laiche, N., Larabi, S. Shape retrieval through normalized B-splines curves. Multimed Tools Appl 77, 13891–13921 (2018). https://doi.org/10.1007/s11042-017-4998-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4998-x

Keywords

Navigation