Skip to main content
Log in

Face recognition using a new compressive sensing-based feature extraction method

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a novel face recognition algorithm that utilizes a sparse Fast Fourier Transform (FFT)-based feature extraction method. In our algorithm, we use Compressive Sampling (CS) theory two times. First, in the feature extraction process for extracting the feature vectors from a face images, and second, in the classification process where the CS reconstruction is used for selecting true classes. As a result, a significant reduction in the dimensionality of the signals is achieved. Extensive and comparative experiments have been conducted to evaluate the performance of the proposed scheme. The experiment results show that the combined Compressive Sensing and Sparse Representation Classification (SRC) achieves a high recognition accuracy, while maintaining a reasonable computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Banitalebi A, Moosaei M, Hossein-Zadeh GA (2010) An investigation on the usage of image quality assessment in visual speech recognition. In: 3rd international congress on image and signal processing (CISP). China

  2. Banitalebi-Dehkordi M, Abutalebi HR, Taban MR (2013) Sound source localization using compressive sensing-based feature extraction and spatial sparsity. Digit Signal Process Elsevier 23(4):1239–1246

    Article  MathSciNet  Google Scholar 

  3. Banitalebi-Dehkordi M, Banitalebi-Dehkordi A (2014) Music genre classification using spectral analysis and sparse representation of the signals. J Signal Process Syst 74(2):273–280

    Article  Google Scholar 

  4. Belhumenur PN, Hepanha JP, Kriegman DJ (1997) Eigenfaces vs Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  5. Chebbo H et al (2013) The ORL database of faces, pp 1–17, 2013, 2, May, Myconos, Greece, Invited Paper), available online in http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

  6. Chellappa R, Wilson CL, Sirohey S (1995) Human and machine recognition of faces: a survey. Proce IEEE 83(5):705–740

    Article  Google Scholar 

  7. Chen D-Y, Hsieh P-C (2012) Face-based gender recognition using compressive sampling. In: Proceedings of IEEE international symposium on intelligent signal processing and communications systems (ISPACS). New Taipei, pp 157–161

  8. Chen S, Liu J, Zhou Z-H (2004) Making FLDA applicable to face recognition with one sample per person. Pattern Recogn 37(7):1553–1555

    Article  Google Scholar 

  9. Daugman J (1997) Face and gesture recognition: overview. IEEE Trans Pattern Anal Mach Intell 19(7):675–676

    Article  Google Scholar 

  10. Every MR (2008) Discriminating between pitched sources in music audio. IEEE Trans Audio Speech Lang Process 16(2):267–277

    Article  Google Scholar 

  11. Gao Y, Qi Y (2005) Robust visual similarity retrieval in single model face databases. Pattern Recogn 38(7):1009–1020

    Article  Google Scholar 

  12. Hennings-Yeomans P, Baker S, Kumar BVKV (2008) Recognition of low-resolution faces using multiple still images and multiple cameras In: Proceedings of IEEE international conference on biometrics: theory, systems, and applications, pp 56–61

  13. Henson R, Cohen Kadosh R, Johnson M, Dick F (2010) Task-dependent activation of face-sensitive cortex: an fMRI adaptation study. IEEE J Cogn Neurosci 22(5):903–917

    Article  Google Scholar 

  14. Huang J, Yuen PC, Chen W-S, Lai JH (2003) Component-based LDA method for face recognition with one training sample. Proc IEEE Int Workshop Anal Model Faces Gest 35(4):120–126. Nice, France

    Google Scholar 

  15. Huang G, Ramesh M, Berg T, Learned-Miller E (2013) Labeled faces in the wild, pp 1–17

  16. Ju J, Plataniotis KN, Venetsanopoulos AN (2003) Regularized discriminant analysis for the small sample size problem in face recognition. Pattern Recogn Lett 24 (16):3079–3087

    Article  Google Scholar 

  17. Jung H-C, Hwang B-W, Lee S-W (2004) Authenticating corrupted face image based on noise model. In: Proceedings of IEEE international conference on automatic face and gesture recognition, pp 272–277

  18. Kawulok M, Emre Celebi M, Smolka B (eds) (2016) Labeled faces in the wild: a survey. In: Advances in face detection and facial image analysis. Springer, New York

  19. Kepenekci B, Tek FB, Akar GB (2002) Occluded face recognition based on Gabor wavelets. In: Proceedings of IEEE International conference on image processing, pp 373–378

  20. Komleh HE, Chandran V, Sridharan S (2001) Robustness to expression variations in fractal-based face recognition. In: Proceedings of IEEE international symposium on signal processing and its applications, pp 359–362

  21. Lades M, Vorbruggen JC, Buhmann J, Lange J, von der Malsburg C, Wurtz RP, Konen W (1993) Distortion invariant object recognition in the dynamic link architecture. IEEE Trans Comput 42(3):300– 311

    Article  Google Scholar 

  22. Le H-S, Li H (2004) Recognizing frontal face images using hidden Markov models with one training image per person. In: Proceedings of IEEE international conference on pattern recognition (ICPR’04), pp 318–321

  23. Lee K, Ho J, Kriegman D (2003) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698

    Google Scholar 

  24. Learned-Miller E, Ferencz A, Jurie F (2008) Faces in real-life images. In: Proceedings of faces in real-life images workshop at the European conference on computer vision, pp 5–10

  25. Liang S, Wang Y, Liu Y (2012) Face recognition algorithm based on compressive sensing and SRC. In: Proceedings of IEEE international conference on instrumentation, measurement, computer, communication and control (IMCCC). Harbin City, pp 1460–1463

  26. Manjunath BS, Chellappa R, von der Malsburg C (1992) A feature based approach to face recognition. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 373–378

  27. Martinez A, Benavente R (1998) The AR face database, CVC Tech Report.

  28. Nagesh P, Li B (2009) A compressive sensing approach for expression-invariant face recognition. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), pp 1518–1525

  29. Paulin F, Santhakumaran A (2011) Classification of breast cancer by comparing back propagation training algorithms. Int J Comput Sci Eng 3(1):327–332

    Google Scholar 

  30. Shaheed MH (2004) Performance analysis of 4 types of conjugate gradient algorithms in the nonlinear dynamic modelling of a TRMS using feedforward neural networks. In: Proceedings of IEEE International conference on systems, man and cybernetics. The Hague, Netherlands, pp 5985–5990

  31. Sheel S, Varshney T, Varshney R (2007) Accelerated learning in MLP using adaptive learning rate with momentum coefficient. In: Proceedings of IEEE international conference on industrial and information systems, pp 307–310

  32. Sreenivas TV, Kleijn WB (2009) Compressive sensing for sparsely excited speech signals. In:Proceedings of IEEE international conference on acoustics, speech, and signal processing (ICASSP), pp 4125–4128

  33. Struc V (2012) PhD (Pretty helpful Development) functions for face recognition toolbox, available at: http://www.face-rec.org/source-codes/

  34. Sun Y, Wang X, Tang X (2013) Deep convolutional network cascade for facial point detection. In: 2013 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 3476–3483

  35. Sun Y, Wang X, Tang X (2013) Hybrid deep learning for face verification. In: 2013 IEEE international conference on computer vision (ICCV). IEEE, pp 1489–1496

  36. Sun Y, Wang X, Tang X (2014) Deep learning face representation from predicting 10,000 classes. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1891–1898

  37. Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: closing the gap to human-level performance in face verification. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1701–1708

  38. Tan X, Chen S, Zhou Z-H, Zhang F (2005) Recognizing partially occluded, expression variant faces from single training image per person with SOM and soft KNN ensemble. IEEE Trans Neural Netw 16(4):875–886

    Article  Google Scholar 

  39. Tan X, Chen S, Zhou Z-H, Zhang F (2006) Face recognition from a single image per person: a survey. Pattern Recogn 39(9):1725–1745

    Article  MATH  Google Scholar 

  40. Tao D, Guo Y, Song M, Li Y, Yu Zh, Tang YY (2016) Person re-identification by dual-regularized KISS metric learning. IEEE Trans Image Process 25(6)

  41. Tao D, Cheng J, Gao X, Li X, Deng Ch (2017) Robust sparse coding for mobile image labeling on the cloud. IEEE Trans Circ Syst Vid Technol 27(1)

  42. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3 (1):71–86

    Article  Google Scholar 

  43. Wakin M (2009) Compressive sensing, pp 4125–4128

  44. Wiskott L, Fellous J-M, Kuiger N, von der Malsburg C (1997) Face recognition by elastic bunch graph matching. IEEE Trans Pattern Anal Mach Intell 19 (7):775–779

    Article  Google Scholar 

  45. Wu J, Zhou Z-H (2002) Face recognition with one training image per person. Pattern Recogn Lett 23(14):1711–1719

    Article  MATH  Google Scholar 

  46. Yang J, Zhang D, Frangi AF, Yang J-U (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Article  Google Scholar 

  47. Yap X, Khong AWH, Gan W-S (2010) Localization of acoustic source on solids: a linear predictive coding based algorithm for location template matching. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing (ICASSP). Dallas, pp 2490–2493

  48. Zhang Y, Martinez AM (2006) A weighted probabilistic approach to face recognition from multiple images and video sequences. ELSEVIER Image Vis Comput 24(6):626–638

    Article  Google Scholar 

  49. Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surv 35(4):399–458

    Article  Google Scholar 

  50. Zhou E, Cao Z, Yin Q (2015) Naive-deep face recognition: Touching the limit of LFW benchmark or not?, arXiv preprint arXiv:1501.04690

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Banitalebi-Dehkordi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banitalebi-Dehkordi, M., Banitalebi-Dehkordi, A., Abouei, J. et al. Face recognition using a new compressive sensing-based feature extraction method. Multimed Tools Appl 77, 14007–14027 (2018). https://doi.org/10.1007/s11042-017-5007-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5007-0

Keywords

Navigation