Skip to main content
Log in

A decision support system for scientists by processing large-scale satellite images on a distributed computing environment

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Data-driven research strategy has been widely accepted in many scientific areas. In the strategy, which consists of several processing steps including data collection, processing, analysis and discovery, data processing step is so time-consuming that it delays the overall time of scientific discovery. This also happens in the field of satellite remote sensing. As SeaDAS, a popular software package used for processing satellite remote sensing images, has been initially devised to work on a single site; it is inevitable to take unendurable time for processing massive remote sensing images. To rectify this issue, this article introduces a data-driven analysis system that rapidly processes a massive volume satellite remote sensing images. Unlike the conventional program for remote sensing images, our system is developed by virtue of both a distributed array-based DBMS and a high-throughput computing facility in order to process massive remote sensing images in a parallel and distributed manner. Consequently, it allows scientists to perform their analysis workloads more quickly and efficiently. Through extensive experiments performed with real-world dataset on 10 computing nodes, we show that our system is up to 27.5 times faster than the conventional SeaDAS package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Brown PG (2010) Overview of SciDB: Large scale array storage, processing and analysis. In: Proc ACM SIGMOD Int Conf Manag Data. ACM, pp 963–968

  2. Campbell JB, Wynne RH (2011) Introduction to remote sensing. Guilford Press, New York

    Google Scholar 

  3. Chen HY, Leou JJ (2012) Multispectral and multiresolution image fusion using particle swarm optimization. Multimed Tools Appl 60(3):495–518

    Article  Google Scholar 

  4. Choudhary A, Liao WK (2011) Scientific Data Management Center for Enabling Technologies (No. DOE/ER/25808). Northwestern University

  5. Christophe E, Michel J, Inglada J (2011) Remote sensing processing: From multicore to GPU. IEEE J Sel Top Appl 4(3):643–652

    Google Scholar 

  6. Critchlow T, Van Dam KK (eds) (2013) Data-Intensive Science. CRC Press, Boca Raton

    Google Scholar 

  7. Cudré-Mauroux P, Kimura H, Lim KT, Rogers J, Simakov R, Soroush E, Velikhov P, Wang DL, Balazinska M, Becla J, DeWitt D (2009) A demonstration of SciDB: A science-oriented DBMS. Proceedings of the VLDB Endowment. Proceedings of the VLDB Endowment 2(2):1534–1537

    Article  Google Scholar 

  8. Dasu T, Johnson T (2003) Exploratory data mining and data cleaning, vol 479. John Wiley & Sons, New York

    Book  MATH  Google Scholar 

  9. Goodchild MF (1991) Geographic information systems. J Retailing 67(1):3–15

    Google Scholar 

  10. Gorry AG, Morton MS (1989) A framework for management information systems. Sloan Manag Rev 30(3):49–61

    Google Scholar 

  11. Gray J, Liu DT, Nieto-Santisteban M, Szalay A, DeWitt DJ, Heber G (2005) Scientific data management in the coming decade. ACM SIGMOD Rec 34(4):34–41

    Article  Google Scholar 

  12. Gu W, Lv Z, Hao M (2015) Change detection method for remote sensing images based on an improved Markov random field. Multimed Tools Appl 2015:1–16

    Google Scholar 

  13. Hey T, Tansley S, Tolle KM (2009) The fourth paradigm: Data-intensive scientific discovery, vol 1. Microsoft research, Redmond, WA

    Google Scholar 

  14. Hooker SB, McClain CR (2000) The calibration and validation of SeaWiFS data. Prog Oceanogr 45(3):427–465

    Article  Google Scholar 

  15. Hovis WA, Clark DK, Anderson F, Austin RW, Wilson WH, Baker ET, Ball D, Gordon HR, Mueller JL, El-Sayed SZ, Sturm B (1980) Nimbus-7 coastal zone color scanner: System description and initial imagery. Science 210(4465):60–63

    Article  Google Scholar 

  16. Jensen JR, Lulla K (1987) Introductory digital image processing: A remote sensing perspective. Taylor & Francis, London

    Google Scholar 

  17. Justice CO, Townshend JR, Vermote EF, Masuoka E, Wolfe RE, Saleous N, Roy DP, Morisette JT (2002) An overview of MODIS land data processing and product status. Remote Sens Environ 83(1):3–15

    Article  Google Scholar 

  18. Justice CO, Vermote E, Townshend JR, Defries R, Roy DP, Hall DK, Salomonson VV, Privette JL, Riggs G, Strahler A, Lucht W (1998) The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans Geosci Remote Sens 36(4):1228–1249

    Article  Google Scholar 

  19. Kaushal R, Shojania KG, Bates DW (2003) Effects of computerized physician order entry and clinical decision support systems on medication safety: A systematic review. Arch Intern Med 163(12):1409–1416

    Article  Google Scholar 

  20. Kawamoto K, Houlihan C, Balas E, Lobach D (2005) Improving clinical practice using clinical decision support systems: A systematic review of trials to identify features critical to success. BMJ 330(7494):765

    Article  Google Scholar 

  21. Keen PG (1987) Decision support systems: The next decade. Decis Support Syst 3(3):253–265

  22. Liu G, Eakin CM, Rauenzahn JL, Christensen TR, Heron SF, Li J, Skirving W, Strong AE, Burgess T (2012) NOAA Coral Reef Watch’s decision support system for coral reef management. In: Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, pp 9–13

  23. McClain CR, Feldman GC, Hooker SB (2004) An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series. Deep Sea Res Part 2 Top Stud Oceanogr 51(1):5–42

    Article  Google Scholar 

  24. McCuistion JD, Birk R (2005) From observations to decision support: The new paradigm for satellite data. Acta Astronaut 56(1):5–8

    Article  Google Scholar 

  25. Petrie GM, Dippold C, Fann G, Jones D, Jurrus E, Moon B, Perrine K (2002) Distributed computing approach for remote sensing images. In: Proc. 34th Symp. Interface, pp 477–489

  26. Plaza A, Du Q, Chang YL, King RL (2011) High performance computing for hyperspectral remote sensing. IEEE J Sel Top Appl 4(3):528–544

    Google Scholar 

  27. Sakaida F, Moriyama M, Murakami H, Oaku H, Mitomi Y, Mukaida A, Kawamura H (1998) The sea surface temperature product algorithm of the Ocean Color and Temperature Scanner (OCTS) and its accuracy. J Oceanogr 54(5):437–442

    Article  Google Scholar 

  28. SeaDAS. http://seadas.gsfc.nasa.gov/. Accessed 20 Aug 2015

  29. Shim JP, Warkentin M, Courtney JF, Power DJ, Sharda R, Carlsson C (2002) Past, present, and future of decision support technology. Decis Support Syst 33(2):111–126

    Article  Google Scholar 

  30. Slater PN, Biggar SF, Holm RG, Jackson RD, Mao Y, Moran MS, Palmer JM, Yuan B (1987) Reflectance-and radiance-based methods for the in-flight absolute calibration of multispectral sensors. Remote Sens Environ 22(1):11–37

    Article  Google Scholar 

  31. Star J, Estes JE (1990) Geographic information systems: An introduction, vol 303. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  32. Stonebraker M, Brown P, Poliakov A, Raman S (2011) The architecture of SciDB. In: Scientific and Statistical Database Management. Springer Berlin Heidelberg, pp 1–16

  33. Tolle KM, Tansley DS, Hey AJ (2011) The fourth paradigm: Data-intensive scientific discovery [point of view]. Proc IEEE 99(8):1334–1337

    Article  Google Scholar 

  34. Wu S, Chen H, Bai Y, Zhu G (2016) A remote sensing image classification method based on sparse representation. Multimed Tools Appl 2016:1–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eui Kyeong Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Sh., Choi, Ys., Lee, R. et al. A decision support system for scientists by processing large-scale satellite images on a distributed computing environment. Multimed Tools Appl 77, 14305–14326 (2018). https://doi.org/10.1007/s11042-017-5030-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5030-1

Keywords

Navigation