Skip to main content
Log in

Catch-up TV forecasting: enabling next-generation over-the-top multimedia TV services

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Due to recent developments in Over-The-Top (OTT) technologies, Pay-TV operators have begun a migration process of managed IP Television (IPTV) services to more appealing OTT approaches. In these scenarios, being able to predict when and what resources will be necessary at any given point is crucial to a high-quality, efficient, and cost-effective operation, especially when dealing with the dynamic and resource-intensive requirements of IPTV multimedia services. To evaluate the advantages of demand forecasting for efficient Catch-up TV delivery on OTT scenarios, this research work explores several classes of machine learning models regarding their accuracy, computational requirement trade-offs, and deployability. The training process relies on a dataset comprised of Catch-up TV usage logs acquired from an IPTV operator’s live production service containing over 1 million subscribers. A predictive and dynamic resource provisioning approach is proposed and evaluated in terms of bandwidth and storage savings. Results demonstrate that forecasting Catch-up TV demand is practical, suitable for integration in OTT solutions, and useful in improving efficiency, with benefits to operators and consumers. Significant savings in bandwidth and storage are shown to be achievable, enabling green and cost-effective resource usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Aguado A, Davis M, Peng S, Alvarez MV, Lopez V, Szyrkowiec T, Autenrieth A, Vilalta R, Mayoral A, Munoz R, Casellas R, Martinez R, Yoshikane N, Tsuritani T, Nejabati R, Simeonidou D (2016) Dynamic virtual network reconfiguration over SDN orchestrated multitechnology optical transport domains. J Light Technol 34(8):1933–1938. doi:10.1109/JLT.2016.2522823

    Article  Google Scholar 

  2. ANACOM (2015) Subscription television service statistical information 2nd quarter 2015. Tech. rep., ANACOM. http://www.anacom.pt/streaming/STVS2quarter2015.pdf?contentId=1366508&field=ATTACHED_FILE. Accessed: 12-2015

  3. Bahrpeyma F, Haghighi H, Zakerolhosseini A (2015) An adaptive RL based approach for dynamic resource provisioning in Cloud virtualized data centers. Computing 97(12):1209–1234. doi:10.1007/s00607-015-0455-8

    Article  MathSciNet  Google Scholar 

  4. Beauvisage T, Beuscart JS (2012) Audience dynamics of online catch up TV. In: Proceedings of the 21st international conference companion on world wide web - WWW ’12 companion. doi:10.1145/2187980.2188077. ACM Press, New York, USA, p 461

    Google Scholar 

  5. Burden F, Winkler D (2009) Bayesian regularization of neural networks. In: Livingstone DJ (ed) Artificial neural networks, methods in molecular biology. doi:10.1007/978-1-60327-101-1_3, vol 458. Humana Press, pp 23–42

  6. Calin D, Schulzrinne H (2015) Intelligent content delivery over wireless via SDN. In: 2015 IEEE wireless communications and networking conference (WCNC). doi:10.1109/WCNC.2015.7127806, pp 2185–2190

    Google Scholar 

  7. Caruana R, Niculescu-Mizil A, Crew G, Ksikes A (2004) Ensemble selection from libraries of models. In: Twenty-first international conference on machine learning - ICML ’04. doi:10.1145/1015330.1015432, vol 34. ACM Press, New York, p 18

    Chapter  Google Scholar 

  8. Dhotre IA (2009) Operating systems, eighth edn. Technical Publications. https://books.google.pt/books?id=iQzqVqFz3IsC

  9. Famaey J, Iterbeke F, Wauters T, De Turck F (2013) Towards a predictive cache replacement strategy for multimedia content. J Netw Comput Appl 36(1):219–227. doi:10.1016/j.jnca.2012.08.014

    Article  Google Scholar 

  10. Harstead E, Sharpe R (2015) Forecasting of access network bandwidth demands for aggregated subscribers using Monte Carlo methods. IEEE Commun Mag 53(3):199–207. doi:10.1109/MCOM.2015.7060505

    Article  Google Scholar 

  11. Hyndman R (2006) Another look at forecast-accuracy metrics for intermittent demand. Foresight: The International Journal of Applied Forecasting (4):43–46. http://www.researchgate.net/publication/5055536_Another_Look_at_Forecast_Accuracy_Metrics_for_Intermittent_Demand/file/d912f50ff0c2ad9136.pdf. Accessed: 01-2016

  12. Hyndman RJ (2015) Forecast: forecasting functions for time series and linear models. https://cran.r-project.org/web/packages/forecast/index.html. Accessed: 01-2016

  13. John GH, Kohavi R, Pfleger K (1994) Irrelevant features and the subset selection problem. In: Cohen WW, Hirsh H (eds) Machine learning: Proceedings of the eleventh international conference. http://machine-learning.martinsewell.com/feature-selection/JohnKohaviPfleger1994.pdf. Accessed: 09-2015. Morgan Kaufmann, San Francisco, pp 121–129

    Google Scholar 

  14. Karatzoglou A, Smola A, Hornik K (2015) Kernlab. https://cran.r-project.org/web/packages/kernlab/kernlab.pdf. Accessed: 09-2015

  15. Karsoliya S (2012) Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. International Journal of Engineering Trends and Technology (IJETT) 3(6):714–717. http://www.ijettjournal.com/volume-3/issue-6/IJETT-V3I6P206.pdf

    Google Scholar 

  16. Kephart J, Chess D (2003) The vision of autonomic computing. Computer 36(1):41–50. doi:10.1109/MC.2003.1160055

    Article  MathSciNet  Google Scholar 

  17. Kryftis Y, Mastorakis G, Mavromoustakis CX, Batalla JM, Pallis E, Kormentzas G (2016) Efficient entertainment services provision over a novel network architecture. IEEE Wirel Commun 23(1):14–21. doi:10.1109/MWC.2016.7422401

    Article  Google Scholar 

  18. Kuhn M (2008) Building predictive models in r using the caret package. J Stat Softw 28(5):1–26. http://www.jstatsoft.org/v28/i05. Accessed: 09-2015

    Article  Google Scholar 

  19. Kuhn M (2015) caret. https://cran.r-project.org/web/packages/caret/caret.pdf. Accessed: 09-2015

  20. Kuhn M, Johnson K (2013) Applied predictive modeling. Springer, New York. doi:10.1007/978-1-4614-6849-3

    Book  MATH  Google Scholar 

  21. Liaw A (2015) randomForest. https://cran.r-project.org/web/packages/randomForest/randomForest.pdf. Accessed: 09-2015

  22. Mercian A, McGarry MP, Reisslein M, Kellerer W (2015) Software defined optical access networks (SDOANs): a comprehensive survey. IEEE Commun Surv Tutorials 18:1–23. doi:10.1109/COMST.2016.2586999

    Google Scholar 

  23. Mevik BH, Wehrens R, Liland KH (2015) Pls. https://cran.r-project.org/web/packages/pls/pls.pdf. Accessed: 09-2015

  24. Molinaro AM, Simon R, Pfeiffer RM (2005) Prediction error estimation: a comparison of resampling methods. Bioinformatics 21 (15):3301–3307. doi:10.1093/bioinformatics/bti499

    Article  Google Scholar 

  25. Nencioni G, Sastry N, Chandaria J, Crowcroft J (2013) Understanding and decreasing the network footprint of catch-up tv. In: Proceedings of the 22nd international conference on world wide web - WWW ’13. doi:10.1145/2488388.2488472. ACM Press, New York, pp 965–976

    Chapter  Google Scholar 

  26. Nielsen (2014) The digital consumer. http://www.nielsen.com/content/dam/corporate/us/en/reports-downloads/2014Reports/the-digital-consumer-report-feb-2014.pdf. Accessed: 09-2015

  27. Nogueira J, Gonzalez D, Guardalben L, Sargento S (2016) Over-the-top catch-up TV content-aware caching. In: 21st IEEE symposium on computers and communication (ISCC). Messina, Italy, p 6

    Google Scholar 

  28. Nogueira J, Guardalben L, Cardoso B, Sargento S (2016) Catch-up TV analytics: statistical characterization and consumption patterns identification on a production service. Multimedia Systems 1–19. doi:10.1007/s00530-016-0516-7

  29. Pathan M, Buyya R (2008) A taxonomy of CDNs. In: Content delivery networks, chap. a taxonomy. doi:10.1007/978-3-540-77887-5_2. Springer, Berlin, Heidelberg, pp 33–77

    Chapter  Google Scholar 

  30. R Foundation for Statistical Computing (2016) The R project for statistical computing. https://www.r-project.org/. Accessed: 01-2016

  31. Ranjan R, Benatallah B, Dustdar S, Papazoglou MP (2015) Cloud resource orchestration programming: overview, issues, and directions. IEEE Internet Comput 19 (5):46–56. doi:10.1109/MIC.2015.20

    Article  Google Scholar 

  32. Ripley B, Venables W (2015) Class. https://cran.r-project.org/web/packages/class/class.pdf. Accessed: 09-2015

  33. Rodriguez PP, Gianola D (2015) Brnn (Bayesian regularization for feed-forward neural networks). https://cran.r-project.org/web/packages/brnn/brnn.pdf. Accessed: 01-2016

  34. RStudio Inc. (2016) RSTudio. https://www.rstudio.com/. Accessed: 01-2016

  35. Saeys Y, Inza IN, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517. doi:10.1093/bioinformatics/btm344

    Article  Google Scholar 

  36. Szlek J, Mendyk A (2015) Fscaret. https://cran.r-project.org/web/packages/fscaret/fscaret.pdf. Accessed: 09-2015

  37. Tofallis C (2015) A better measure of relative prediction accuracy for model selection and model estimation. J Oper Res Soc 66(8):1352–1362. doi:10.1057/jors.2014.103. Accessed: 01-2016

    Article  Google Scholar 

  38. Vanattenhoven J, Geerts D (2015) Broadcast, video-on-demand, and other ways to watch television content. In: Proceedings of the ACM international conference on interactive experiences for TV and online video - TVX ’15. doi:10.1145/2745197.2745208. ACM Press, New York, pp 73–82

    Chapter  Google Scholar 

  39. Weingärtner R, Bräscher GB, Westphall CB (2015) Cloud resource management: a survey on forecasting and profiling models. J Netw Comput Appl 47:99–106. doi:10.1016/j.jnca.2014.09.018

    Article  Google Scholar 

  40. Wirth R (2000) CRISP-DM: towards a standard process model for data mining. In: Proceedings of the fourth international conference on the practical application of knowledge discovery and data mining. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.198.5133. Accessed: 12-2015, pp 29–39

    Google Scholar 

  41. Yeo IK, Johnson RA (2000) A new family of power transformations to improve normality or symmetry. Biometrika 87(4):954–959. doi:10.1093/biomet/87.4.954

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fausto Carvalho (Altice Labs, SA) and João Ferreira (MEO - Serviços de Comunicações e Multimédia, SA) for the key discussions and for providing the raw Catch-up TV dataset.

This research was funded by UltraTV (Portugal 2020 POCI-01-0247-FEDER-017738), by FCT/MEC through national funds, and when applicable co-funded by FEDER – PT2020 partnership agreement under the project UID/EEA/50008/2013 OT2Delivery (Over-the-top Multimedia Content Delivery for Next Generation Mobile Networks).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Nogueira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogueira, J., Guardalben, L., Cardoso, B. et al. Catch-up TV forecasting: enabling next-generation over-the-top multimedia TV services. Multimed Tools Appl 77, 14527–14555 (2018). https://doi.org/10.1007/s11042-017-5043-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5043-9

Keywords

Navigation