Skip to main content
Log in

Near lossless coding of sparse histogram images based on zero-skip quantization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper introduces a zero-skip quantization (ZS.Q) scheme for the near lossless coding of sparse histogram images. Increases in the range of pixel values and various tone mapping operations on those pixel values mean that the histogram bins often contain no pixels. Recently, this sparseness of the histogram was used to increase the lossless coding performance by introducing histogram packing. This approach was extended to lossy coding by combining spatial quantization and lossless coding. However, such methods do not satisfy the near lossless (NL) condition. In contrast, conventional NL coding such as the JPEG-LS standard satisfies the NL condition, but does not use the histogram sparseness. In this paper, a simple ZS.Q procedure is introduced that uses the histogram sparseness to increase coding efficiency under the NL condition. The proposed method has the following advantages: 1) It guarantees the maximum quantization error is less than some threshold; 2) It can be combined with an arbitrary lossless encoder, such as lossless JPEG 2000 or lossless JPEG-LS; 3) Coding errors do not accumulate under repeat encoding and decoding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Adams MD, Kossentini F (2000) JasPer: a software-based JPEG-2000 codec implementation. In: Proc. IEEE International Conference on Image Processing, Vancouver, vol. 2, pp 53–56, Sept. 2000

  2. Aguzzi M, Albanesi M (2006) A novel approach to sparse histogram image lossless compression using JPEG 2000. Electron Lett Comp Vision Image Anal 5(4):24–46

    Article  Google Scholar 

  3. Asif MT, Srinivasan K, Mitrovic N, Dauwels J, Jaillet P (2015) Near-lossless compression for large traffic networks. IEEE Trans Intell Transp Syst 16(4):1817–1826

    Article  Google Scholar 

  4. Bazhyna A, Egiazarian K (2008) Lossless and near lossless compression of real color filter array data. IEEE Trans Consum Electron 54(4):1492–1500

    Article  Google Scholar 

  5. Beerten J, Blanes I, Serra-Sagristà J (2015) A fully embedded two-stage coder for hyperspectral near-lossless compression. IEEE Geosci Remote Sens Lett 12(8):1775–1779

    Article  Google Scholar 

  6. Britanak V, Yip PC, Rao KR (2006) Discrete cosine and sine transforms: general properties, fast algorithms and integer approximations, 1st edn. Academic Press, San Diego

    Google Scholar 

  7. Chen YJ, Oriantara S, Nguyen T (2000) Video compression using integer DCT. In: Proc. IEEE International Conference on Image Processing, Vancouver, vol. 2, pp 844–847, Sept. 2000

  8. Chien CY, Huangm SC, Pan CH, Fang CM, Chen LG (2009) Pipelined arithmetic encoder design for lossless JPEG XR encoder. In: Proc. IEEE International Symposium on Consumer Electronics, Kyoto, pp 144–147, May 2009

  9. Chou CH, Liu KC (2008) Colour image compression based on the measure of just noticeable colour difference. IET Image Process 2(6):304–322

    Article  MathSciNet  Google Scholar 

  10. Christopoulos C, Skodras A, Ebrahimi T (2000) The JPEG 2000 still image coding system: an overview. IEEE Trans Consum Electron 46(4):1103–1127

    Article  Google Scholar 

  11. Chuah S, Dumitrescu S, Wu X (2013) L2 optimized predictive image coding with l infinity bound. IEEE Trans Image Processing 22(12):5271–5281

    Article  Google Scholar 

  12. Dang DK, Ohnishi M, Iwahashi M, Chochaitam S (2005) A new structure of integer DCT least sensitive to finite word length expression of multipliers. In: Proc. IEEE International Conference on Image Processing, Genoa, vol. 2, pp 269–272, Sept. 2005

  13. Ferreira PJSG, Pinho AJ (2002) Why does histogram packing improve lossless compression rates? IE.EE Signal Processing Lett 9(8):259–261

    Article  Google Scholar 

  14. Fujiyoshi M, Kiya H (2015) A near-lossless image compression system with data hiding capability. In: Proc. Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Hong Kong, pp 1280–1286, Dec. 2015

  15. Grecos C, Jiang J, Edirisinghe EA (2001) Two low cost algorithms for improved diagonal edge detection in JPEG-LS. IEEE Trans Consum Electron 47(3):466–473

    Article  Google Scholar 

  16. ISO/IEC 14495-1: 1999 (1999) Information technology - Lossless and near-lossless compression of continuous-tone still images: Baseline. Dec. 1999

  17. ISO/IEC 15444-1:2004 (2004) Information technology - JPEG 2000 image coding system: Core coding system. pp 1–194

  18. Iwahashi M, Kiya H (2012) Efficient lossless bit depth scalable coding for HDR images. In: Proc. Signal & Information Processing Association Annual Summit and Conference, Hollywood, pp 1–4, Dec. 2012

  19. Iwahashi M, Kiya H (2012) Avoidance of singular point in integer orthonormal transform for lossless coding. IEEE Trans Signal Process 60(5):2648–2653

    Article  MathSciNet  Google Scholar 

  20. Iwahashi M, Kiya H (2013) Two layer lossless coding of HDR images. In: Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Vancouver, pp 1340–1344, May 2013

  21. Iwahashi M, Nakagawa K, Chokchaitam S, Tonomura Y (2004) Theoretical analysis on optimum word length assignment for integer DCT. In: Proc. IEEE International Conference on Image Processing, Singapore, vol. 4, pp 2507–2510, Oct. 2004

  22. Iwahashi M, Ogawa M, Kiya H (2011) Lossless integer color transform for four color components. In: Proc. IEEE Visual Communications and Image Processing, Tainan, pp 1–4, Nov. 2011

  23. Iwahashi M, Kobayashi H, Kiya H (2012) Lossy compression of sparse histogram image. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, pp 1361–1364, March 2012

  24. Iwahashi M, Kobayashi H, Kiya H (2012) Fine rate control and high SNR coding for sparse histogram images. In: Proc. Picture Coding Symposium, Krakow, pp 205–208, May 2012

  25. Iwahashi M, Orachon T, Kiya H (2013) Three dimensional discrete wavelet transform with deduced number of lifting steps. In: Proc. IEEE International Conference on Image Processing, Melbourne, pp 1651–1654, Sept. 2013

  26. Iwahashi M, Orachon T, Kiya H (2013) Non separable 3D lifting structure compatible with separable quadruple lifting DWT. In: Proc. Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Kaohsiung, pp 1–4, Oct. 2013

  27. Jeong H, Kim J, Lee K, Yoo K, Kim J (2012) Lossless embedded compression algorithm with context-based error compensation for video application. In: Proc. IEEE International Symposium on Consumer Electronics, Harrisburg, pp 1–4, June 2012

  28. Ke L, Marcellin MW (1998) Near-lossless image compression: minimum-entropy, constrained-error DPCM. IEEE Trans Image Process 7(2):225–228

    Article  MathSciNet  Google Scholar 

  29. Li X, Orchard MT (2001) Edge-directed prediction for lossless compression of natural images. IEEE Trans Image Process 10(6):813–817

    Article  Google Scholar 

  30. Nasr Esfahani E, Samavi S, Karimi N, Shiran S (2008) Near lossless image compression by local packing of histogram. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, pp 1197–1200, March 2008

  31. Penna B, Tillo T, Magli E, Olmo G (2006) Progressive 3-D coding of hyperspectral images based on JPEG 2000. IEEE Geosci, Remote Sen Lett 3(1):125–129

    Article  Google Scholar 

  32. Pinho AJ (2002) An online preprocessing technique for improving the lossless compression of images with sparse histograms. IEEE Signal Process Lett 9(1):5–7

    Article  Google Scholar 

  33. Poomrittigul S, Ogawa M, Iwahashi M, Kiya H (2013) Reversible color transform for Bayer color filter array images. APSIPA Trans Signal Inf Process 2:1–10

    Article  Google Scholar 

  34. Qian SE, Bergeron M, Cunningham I, Gagnon L, Hollinger A (2006) Near lossless data compression onboard a hyperspectral satellite. IEEE Trans Aerosp Electron Syst 42(3):851–866

    Article  Google Scholar 

  35. Reinhard E, Ward G, Pattanaik S, Debevec P, Heidrich W, Myszkowski K (2010) High dynamic range imaging - acquisition, display and image based lighting, 2nd edn. Morgan Kaufmann, Burlington

    Google Scholar 

  36. Santa Cruz D, Ebrahimi T (2000) An analytical study of JPEG 2000 functionalities. In: Proc. International Conference on Image Processing, Vancouver, vol. 2, pp. 49–52, Sept. 2000

  37. van der Schaar M, de With PHN (2000) Near-lossless complexity-scalable embedded compression algorithm for cost reduction in DTV receivers. IEEE Trans Consum Electron 46(4):923–933

    Article  Google Scholar 

  38. Son CH, Kim JW, Song SG, Park SM, Kim YM (2010) Low complexity embedded compression algorithm for reduction of memory size and bandwidth requirements in the JPEG 2000 encoder. IEEE Trans Consum Electron 56(4):2421–2429

    Article  Google Scholar 

  39. Taquet J, Labit C (2012) Hierarchical oriented predictions for resolution scalable lossless and near-lossless compression of CT and MRI biomedical images. IEEE Trans Image Process 21(5):2641–2652

    Article  MathSciNet  Google Scholar 

  40. Ward G, Simmons M (2005) JPEG-HDR: A backwards-compatible, high dynamic range extension to JPEG. In: Proc. Color Imaging Conference, Arizona, pp 1–8, Nov. 2005

  41. Weinberger MJ, Seroussi G, Sapiro G (2000) The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans Image Process 9(8):1309–1324

    Article  Google Scholar 

  42. Wu X, Bao P (2000) L infinity constrained high-fidelity image compression via adaptive context modeling. IEEE Trans Image Process 9(4):536–542

    Article  Google Scholar 

  43. Wu X, Memon N (1996) CALIC - A context based adaptive lossless image codec. In: Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing. Atlanta, vol. 4, pp 1890–1893, May 1996

  44. Xiong Z, Wu X, Cheng S, Hua J (2003) Lossy-to-lossless compression of medical volumetric data using three-dimensional integer wavelet transforms. IEEE Trans Med Imaging 22(3):459–470

    Article  Google Scholar 

  45. Xu R, Pattanaik SN, Hughes CE (2005) High-dynamic-range still image encoding in JPEG 2000. IEEE Comput Graph Appl 25(6):57–64

    Article  Google Scholar 

  46. Yng TLB, Lee BG, Yoo H (2008) A low complexity and lossless frame memory compression for display devices. IEEE Trans Consum Electron 54(3):1453–1458

    Article  Google Scholar 

  47. Zhang Y, Agrafiotis D, Bull DR (2013) High dynamic range image & video compression a review. In: Proc. International Conference on Digital Signal Processing, Santorini, pp 1–7, July 2013

Download references

Acknowledgements

This work was supported in part by a Japan Society for the Promotion of Science Grant-in-Aid KAKENHI Grant Number 23560445.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayaka Minewaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minewaki, S., Iwahashi, M., Kobayashi, H. et al. Near lossless coding of sparse histogram images based on zero-skip quantization. Multimed Tools Appl 78, 27–45 (2019). https://doi.org/10.1007/s11042-017-5082-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5082-2

Keywords

Navigation