Skip to main content
Log in

Research on multi-camera information fusion method for intelligent perception

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, the Gaussian Mixture Model and Mean Shift algorithm are used to detect and track moving objects in the visual perception network composed of multiple cameras. And on this basis, a target matching method based on wavelet transform, which is applied in a visual perception network composed by multiple camera, fusing visual information from different cameras is proposed. This method takes local features as basis of target matching, and applies wavelet transformation to detect the feature points that represent important information of the target image, and then extracts the color of the neighborhood of feature points as its salient features. The method of classification and clustering is applied by calculating the distance of salient features vector space to measure similarities of the target features and thus realize target recognition. The test result shows that the method can realize the matching and recognition of moving object with the cooperation among multiple cameras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Ali MMN, Abdullah-Al-Wadud M, Lee SL (2014) Multiple object tracking with partial occlusion handling using salient feature points[J]. Inf Sci 278(18):448–465

  2. Burdescu DD, Brezovan M, Ganea E, Stanescu L (2009) A new method for segmentation of images represented in a HSV color space[C]. In: ACIVS 2009, Advanced Concepts for Intelligent Vision Systems. Springer Berlin, Heidelberg, pp 606–617

  3. Chen R (2015) Image segmentation and target tracking based on Meanshift algorithm[C]. In: International Conference on Advances in Mechanical Engineering and Industrial Informatics (ameii-15.2015.135)

  4. Craglia M, de Bie K et al (2012) Digital earth 2020: towards the vision for the next decade[J]. Int J Digital Earth 5(1):4–21

  5. Draisma J, Horobeţ E et al (2016) The Euclidean distance degree of an algebraic variety[J]. Found Comput Math 16(1):99–149

  6. Riou L, Coudert S, Fayolle J, Ducottet C (2000) A wavelet based multiscale detection scheme of feature points[C]. In: Pattern Recognition, International Conference on, vol 3. pp 3425

  7. Forbes C, Evans M, Hastings N, Peacock B (2010) Normal (Gaussian) Distribution[M]. John Wiley & Sons, Inc., Hoboken, pp 143–148

  8. Girone G, D’Uggento AM (2016) About the mean difference of the inverse normal distribution[J]. Appl Math 7(14):1504–1509

  9. Grzejszczak T, Kawulok M, Galuszka A (2016) Hand landmarks detection and localization in color images[J]. Multimedia Tools Appl 75(23):16363–16387

  10. Gu H-Z, Lee S-Y (2013) A view-invariant and anti-reflection algorithm for car body extraction and color classification[J]. Multimedia Tools Appl 65(3):387–418

  11. Hashem IAT, Chang V, Anuar NB, et al (2016) The role of big data in smart city[J]. Int J Inf Manag 36(5):748–758

  12. X Hu, J Zheng (2016) An improved moving object detection algorithm based on Gaussian mixture models[J]. Open J Appl Sci 6(07):449–456

  13. Hu M, Liu Y, Fan Y (2015) Robust image feature point matching based on structural distance[C]. In: Chinese Conference on Image and Graphics Technologies, IGTA 2015: Advances in Image and Graphics Technologies. pp 142–149

  14. S Kannappan, Y Liu, BP Tiddeman (2016) Performance Evaluation of Video Summaries Using Efficient Image Euclidean Distance[M]. Adv Vis Comput 2016:33–42

  15. Karney C.F.F. (2016) Sampling exactly from the normal distribution[J]. ACM Trans Math Softw 42(1):1–14

  16. Liao W, Zhao XM, Qian SY, Nie Y (2016) Combining with the three-frame difference and improved Gaussian mixture model of moving object detection method[J]. Comput Inf Technol

  17. Liberti L, Lavor C, Maculan N (2012) Antonio Mucherino. Euclidean distance geometry and applications[J]. Quantit Biol 56(1):3–69

  18. Mishchenko Y (2015) A fast algorithm for computation of discrete Euclidean distance transform in three or more dimensions on vector processing architectures[J]. Signal Image Video Process 9(1):19–27

  19. Neirotti P, De Marco A, Cagliano A, Mangano G, Scorrano F (2014) Current trends in Smart City initiatives: some stylised facts[J]. Cities 38:25–36

  20. Pan Z, Liu S, Fu W (2017) A review of visual moving target tracking[J]. Multimedia Tools Appl 76(16):16989–17018

  21. Pasupa K, Pantuwong N, Nopparit S (2015) A comparative study of feature point matching versus foreground detection for computer detection of dairy cows in video frames[J]. Artif Life Robotics 20(4):320–326

  22. Pathak RS, Singh A (2016) Distributional wavelet transform[J]. Proc Natl Acad Sci India Sect A 86(2):273–277

  23. Priambodo B, Ani N (2016) Count vehicle over region of interest using euclidean distance[J]. Int Res J Comp Sci 3(05). http://www.irjcs.com/volumes/Vol3/iss5/03.MYCS10081.pdf

  24. Rahman MM, Harun-Or-Roshid, Mozid Pk MA, Mamun MAA (2011) A comparative study of wavelet transform and Fourier transform[J]. J Phys Sci 15:149–160

  25. Ratanasanya S, Polvichai J, Sirinaovakul B (2015) Feature point matching with matching distribution. In: Unger H, Meesad P, Boonkrong S (eds) Recent advances in information and communication technology 2015. Advances in intelligent systems and computing, vol. 361. Springer, Cham, pp 9–18

    Google Scholar 

  26. Saravanan G, Yamuna G, Nandhini S (2016) Real time implementation of RGB to HSV/HSI/HSL and its reverse color space models[C]. In: International conference on communication and signal processing(ICCSP). pp 0462–0466

  27. Sattar F, Karray F, Kamel M, Nassar L, Golestan K (2016) Recent advances on context-awareness and data/information fusion in ITS[J]. Int J Intell Transp Syst Res 14(1):1–19

  28. Sindhuja G, Renuka DSM (2015) Comparative analysis of mean shift in object tracking[C]. In: (IEEE 2015) Conference on Power, Control, Communication and Computational Technologies for Sustainable Growth (PCCCTSG). pp 283–287

  29. Skoneczny S (2012) Nonlinear sharpening in the HSV color space[J]. Przegląd Elektrotechniczny 2012(2):140–144

  30. Sriharsha KV, Rao NV (2015) Dynamic scene analysis using Kalman filter and Mean shift tracking algorithms[C]. In: 2015 6th International Conference on Computing, Communication and Networking Technologies (ICCCNT). pp 1–8

  31. Sun Y, Feng X (2012) Local feature image fusion algorithm based on wavelet transform[C]. Lect Notes Electr Eng 124(2):711–716

  32. Surkutlawar S, Kulkarni RK (2013) Shadow suppression using RGB and HSV color space in moving object detection[J]. Int J Adv Comput Sci Appl 4(1):164–169

  33. Utomo FS (2016) Multiple vehicle tracking using adaptive Gaussian mixture model and Kalman filter[J]. Am J Appl Sci 13(12):1407–1412

  34. Vogler N, Bocklitz T, Mariani M et al (2010) Separation of CARS image contributions with a Gaussian mixture model[J]. J Opt Soc Am A 27(6):1361–1371

  35. Wang D, Sun W, Yu S, Li L, Liu W (2016) A novel background-weighted histogram scheme based on foreground saliency for mean-shift tracking[C]. Multimedia Tools Appl 75(17):10271–10289

  36. Xiong T, Zhang L (2016) Double Gaussian mixture model for image segmentation with spatial relationships[J]. J Vis Commun Image Represent 34:135–145

  37. Xu Y, Zhou C, Xu S, Xing C (2014) Moving region detection based on background difference[C]. In: 2014 I.E. Workshop on Electronics, Computer & Applications (IWECA). IEEE, Ottawa, pp 518–521

  38. Yadav D K (2014) Efficient method for moving object detection in cluttered background using Gaussian Mixture Model[C]. In: 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, New Delhi, pp 943–948

  39. Yager RR (2016) Multi-source information fusion using measure representations[M]. In: On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory, Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ), vol 336. p 199–214

  40. Zhang Y, Chen Y, Bowen DU, Juhua PU, Xiong Z (2016) Multimodal data fusion model for smart city[J]. J Beijing Univ Aeronaut Astronaut 42(12):2683–2690

  41. Zheng Y, Xiao S (2016) Performance analysis of a moving target tracking method based on computer vision[C]. In: 2016 I.E. Eighth International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). pp 467–470

  42. Zhou Z, Zhou M, Shi X (2016) Target tracking based on foreground probability[J]. Multimedia Tools Appl 75(6):3145–3160

Download references

Acknowledgments

The work was supported in part by the State Key Program of National Natural Science Foundation of China (Grant No. U1536203), and the National Natural Science Foundation of China (Grant No. 61572214), and the independent innovation research foundation of Huazhong University of Science and Technology (Grant No. 2016YXMS089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Tianjiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, F., Tianjiang, W., Fang, L. et al. Research on multi-camera information fusion method for intelligent perception. Multimed Tools Appl 77, 15003–15026 (2018). https://doi.org/10.1007/s11042-017-5085-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5085-z

Keywords

Navigation