Skip to main content
Log in

Latent feature learning for activity recognition using simple sensors in smart homes

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Activity recognition is an important step towards monitoring and evaluating the functional health of an individual, and it potentially promotes human-centric ubiquitous applications in smart homes particularly for senior healthcare. The nature of human activity characterized by a high degree of complexity and uncertainty, however, poses a great challenge to the design of good feature representations and the optimization of classifiers towards building a robust model for human activity recognition. In this study, we propose to exploit deep learning techniques to automatically learn high-level features from the binary sensor data under the assumption that there exist discriminative latent patterns inherent in the simple low-level features. Specifically, we extract high-level features with a stacked autoencoder that has a deep and hierarchy architecture, and combine feature learning and classifier construction into a unified framework to obtain a jointly optimized activity recognizer. Besides, we investigate two different original feature representations of the sensor data for latent feature learning. To evaluate the performance of the proposed method, we conduct extensive experiments on three publicly available smart home datasets, and compare it with a range of shallow models in terms of time-slice accuracy and class accuracy. Experimental results show that our proposed model achieves better recognition rates and generalizes better across different original feature representations, indicating its applicability to the real-world activity recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bao L, Intille SS (2004) Activity recognition from user-annotated acceleration data. In: International Conference on Pervasive Computing, pp 1–17

  2. Bengio Y (2009) Learning deep architectures for AI. Found Trends Mach Learn 2(1):1–127. doi:10.1561/2200000006

    Article  MATH  Google Scholar 

  3. Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems, pp 153–160

  4. Bhattacharya S, Nurmi P, Hammerla N, Plötz T (2014) Using unlabeled data in a sparse-coding framework for human activity recognition. Pervasive Mob Comput 15:242–262. doi:10.1016/j.pmcj.2014.05.006

    Article  Google Scholar 

  5. Chen L, Hoey J, Nugent CD, Cook DJ, Yu Z (2012) Sensor-based activity recognition. IEEE Trans Syst Man Cybern Part C 42(6):790–808. doi:10.1109/TSMCC.2012.2198883

    Article  Google Scholar 

  6. Cook DJ (2012) Learning setting-generalized activity models for smart spaces. IEEE Intell Syst 27(1):32–38. doi:10.1109/MIS.2010.112

    Article  Google Scholar 

  7. Dernbach S, Das B, Krishnan NC, Thomas BL, Cook DJ (2012) Simple and complex activity recognition through smart phones. In: 2012 8th International Conference on Intelligent Environments, pp 214–221

  8. Figo D, Diniz PC, Ferreira DR, Cardoso JM (2010) Preprocessing techniques for context recognition from accelerometer data. Pers Ubiquit Comput 14(7):645–662. doi:10.1007/s00779-010-0293-9

    Article  Google Scholar 

  9. Fleury A, Vacher M, Noury N (2010) SVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental results. IEEE Trans Inf Tech Biomed 14(2):274–283. doi:10.1109/TITB.2009.2037317

    Article  Google Scholar 

  10. Hinton G, Salakhutdinov R (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507. doi:10.1126/science.1127647

    Article  MathSciNet  MATH  Google Scholar 

  11. Hinton G, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554. doi:10.1162/neco.2006.18.7.1527

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim SC, Jeong YS, Park SO (2013) RFID-based indoor location tracking to ensure the safety of the elderly in smart home environments. Pers Ubiquit Comput 17(8):1699–1707. doi:10.1007/s00779-012-0604-4

    Article  Google Scholar 

  13. Krishnan NC, Cook DJ (2014) Activity recognition on streaming sensor data. Pervasive Mob Comput 10:138–154. doi:10.1016/j.pmcj.2012.07.003

    Article  Google Scholar 

  14. Kwapisz JR, Weiss GM, Moore SA (2011) Activity recognition using cell phone accelerometers. ACM SigKDD Explor News 12(2):74–82. doi:10.1145/1964897.1964918

    Article  Google Scholar 

  15. Minor B, Doppa JR, Cook DJ (2015) Data-driven activity prediction: algorithms, evaluation methodology, and applications. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 805–814

  16. Okeyo G, Chen L, Wang H, Sterritt R (2014) Dynamic sensor data segmentation for real-time knowledge-driven activity recognition. Pervasive Mob Comput 10:155–172. doi:10.1016/j.pmcj.2012.11.004

    Article  Google Scholar 

  17. Ordóñez FJ, Roggen D (2016) Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1):115. doi:10.3390/s16010115

    Article  Google Scholar 

  18. Ordóñez F, de Toledo P, Sanchis A (2015) Sensor-based bayesian detection of anomalous living patterns in a home setting. Pers Ubiquit Comput 19(2):259–270. doi:10.1007/s00779-014-0820-1

    Article  Google Scholar 

  19. Philipose M, Fishkin KP, Perkowitz M, Patterson DJ, Fox D, Kautz H, Hähnel D (2004) Inferring activities from interactions with objects. IEEE Pervasive Comput 3(4):50–57. doi:10.1109/MPRV.2004.7

    Article  Google Scholar 

  20. Plötz T, Hammerla NY, Olivier P (2011) Feature learning for activity recognition in ubiquitous computing. In: Proceedings International Joint Conference on Artificial Intelligence, pp 1729–1734

  21. Ronao CA, Cho SB (2016) Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst Appl 59:235–244. doi:10.1016/j.eswa.2016.04.032

    Article  Google Scholar 

  22. Suryadevara NK, Mukhopadhyay SC (2014) Determining wellness through an ambient assisted living environment. IEEE Intell Syst 29(3):30–37. doi:10.1109/MIS.2014.16

    Article  Google Scholar 

  23. Tapia EM, Intille SS, Larson K (2004) Activity recognition in the home using simple and ubiquitous sensors. In: International Conference on Pervasive Computing, pp 158–175

  24. Tapia E, Intille S, Haskell W, Larson K, Wright J, King A, Friedman R (2007) Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor. In: 11th IEEE International Symposium on Wearable Computers, pp 37–40

  25. van Kasteren TLM (2011) Activity recognition for health monitoring elderly using temporal probabilistic models. Dissertation, University of Amsterdam

  26. Van Kasteren T, Noulas A, Englebienne G, Kröse B (2008) Accurate activity recognition in a home setting. In: Proceedings of the 10th International Conference on Ubiquitous Computing, pp 1–9

  27. van Kasteren TLM, Englebienne G, Kröse BJ (2010) An activity monitoring system for elderly care using generative and discriminative models. Pers Ubiquit Comput 14(6):489–498. doi:10.1007/s00779-009-0277-9

    Article  Google Scholar 

  28. Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp 1096–1103

  29. Wang L (2016) Recognition of human activities using continuous autoencoders with wearable sensors. Sensors 16(2):189. doi:10.3390/s16020189

    Article  Google Scholar 

  30. Wang A, Chen G, Yang J, Zhao S, Chang CY (2016) A comparative study on human activity recognition using inertial sensors in a smartphone. IEEE Sensors J 16(11):4566–4578. doi:10.1109/JSEN.2016.2545708

    Article  Google Scholar 

  31. Wilson DH, Atkeson C (2005) Simultaneous tracking and activity recognition (STAR) using many anonymous, binary sensors. In: International Conference on Pervasive Computing, pp 62–79

  32. Yang J, Nguyen M, San P, Li X, Krishnaswamy S (2015) Deep convolutional neural networks on multichannel time series for human activity recognition. In: Proceedings International Joint Conference on Artificial Intelligence, pp 3995–4001

Download references

Acknowledgements

This work was supported partially by the Natural Science Foundation of China (No. 61472057), the Fundamental Research Funds for the Central Universities (No. JZ2016HGBH1053), and the China Postdoctoral Science Foundation (No. 2016 M592046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Wang.

Ethics declarations

Conflict of interest

The authors claim no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Wang, A., Zhao, S. et al. Latent feature learning for activity recognition using simple sensors in smart homes. Multimed Tools Appl 77, 15201–15219 (2018). https://doi.org/10.1007/s11042-017-5100-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5100-4

Keywords

Navigation