Skip to main content
Log in

Salient object detection via robust dictionary representation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The theory of sparse and low-rank representation has worked competitive performance in the field of salient object detection. Generally, the salient object is represented as sparse error while the non-salient region is constrained by the property of low-rank. However, sparsity ignores the global structure which may break up the low-rank property. Besides, the outliers always lead to a poor representation. To handle these problems, this paper proposes a robust representation based on a discriminative dictionary which consists of non-salient and salient templates. Three weight measures are introduced and combined to select the proper templates. The coefficients on dictionary are restricted by 2,1-norm. Correspondingly, Frobenius norm instead of 1-norm is exploited to constrain the distribution of representation error. We compare the proposed algorithm against 17 state-of-the-art methods on 4 popular datasets by 6 evaluation metrics and demonstrate the competitive performance in terms of qualitative and quantitative results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. “sample-specific” corruptions mean that some data samples are corrupted and the others are clean [23].

  2. When D is designed to be a full rank matrix, then rank(DZ) = rank(Z). Since FDZ, then rank(D) ≈ rank(Z). So, if F is low-rank, we can obtain that Z is low-rank.

References

  1. Achanta R, Hemami S, Süsstrunk S (2009) Frequency-tuned salient region detection. In: Proc. IEEE CVPR, pp 1597–1604

  2. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2281

    Article  Google Scholar 

  3. Alexe B, Deselaers T, Ferrari V (2012) Measuring the objectness of image windows. IEEE Trans Pattern Anal Mach Intell 34(11):2189–2202

    Article  Google Scholar 

  4. Borji A, Itti L (2012) Exploiting local and global patch rarities for saliency detection. In: Proc IEEE CVPR, pp 478–485

  5. Borji A, Cheng M M, Jiang H, Li J (2015) Salient object detection: a benchmark. IEEE Trans Image Process 24(12):5706–5722

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang X, Yang Y, Xing E P, Yu Y L (2015) Complex event detection using semantic saliency and nearly-isotonic svm. In: Proc. ICML

  7. Chang X, Yu YL, Yang Y, Xing EP (2016) Semantic pooling for complex event analysis in untrimmed videos. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2016.2608901

    Article  Google Scholar 

  8. Chang X, Ma Z, Yang Y, Zeng Z, Hauptmann A G (2017) Bi-level semantic representation analysis for multimedia event detection. IEEE Trans Cybern 47(5):1180–1197

    Article  Google Scholar 

  9. Chang X, Ma Z, Lin M, Yang Y, Hauptmann A (2017) Feature interaction augmented sparse learning for fast kinect motion detection. IEEE Trans Image Process. https://doi.org/10.1109/TIP.2017.2708506

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng M M, Warrell J, Lin W Y, Zheng S, Vineet V, Crook N (2013) Efficient salient region detection with soft image abstraction. In: Proc. IEEE ICCV, pp 1529–1536

  11. Cheng M M, Mitra N J, Huang X, Torr P H S, Hu S (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582

    Article  Google Scholar 

  12. Gao Z, Cheong L F, Wang Y X (2014) Block-sparse rpca for salient motion detection. IEEE Trans Pattern Anal Mach Intell 36(10):1975–1987

    Article  Google Scholar 

  13. Hou X, Zhang L (2008) Dynamic visual attention: searching for coding length increments. In: NIPS, pp 681–688

  14. Jiang B, Zhang L, Lu H, Yang C, Yang M H (2013) Saliency detection via absorbing Markov chain. In: Proc. IEEE ICCV, pp 1665–1672

  15. Kim J, Han D, Tai Y, Kim J (2014) Salient region detection via high-dimensional color transform. In: Proc IEEE CVPR, pp 883–890

  16. Lang C, Liu G, Yu J, Yan S (2012) Saliency detection by multitask sparsity pursuit. IEEE Trans Image Process 21(3):1327–1338

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee B S, Lau C T, Chen Z, Lin C W (2012) Bottom-up saliency detection model based on human visual sensitivity and amplitude spectrum. IEEE Trans Multimed 14(1):187–198

    Article  Google Scholar 

  18. Li X, Lu H, Zhang L, Ruan X, Yang M H (2013) Saliency detection via dense and sparse reconstruction. In: Proc. IEEE ICCV, pp 2976–2983

  19. Li H, Lu H, Lin Z, Shen X, Price B (2015) Inner and inter label propagation: salient object detection in the wild. IEEE Trans Image Process 24(10):3176–3186

    Article  MathSciNet  MATH  Google Scholar 

  20. Li P, Bu J, Yu J, Chen C (2016) Towards robust subspace recovery via sparsity-constrained latent low-rank representation. J Vis Commun Image Represent 37:46–52

    Article  Google Scholar 

  21. Lin Z, Liu R, Su Z (2011) Linearized alternating direction method with adaptive penalty for low-rank representation. In: NIPS, pp 612–620

  22. Liu J, Ji S, Ye J (2009) Multi-task feature learning via efficient 2,1 norm minimization. In: UAI

  23. Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. In: Proc ICML, pp 663–670

  24. Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H (2011) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367

    Article  Google Scholar 

  25. Ma Z, Chang X, Yang Y, Sebe N, Hauptmann A (2017) The many shades of negativity. IEEE Trans Multimed 19(7):1558–1568

    Article  Google Scholar 

  26. Mahadevan V, Vasconcelos N (2009) Saliency-based discriminant tracking. In: Proc IEEE CVPR, pp 1007–1013

  27. Margolin R, Tal A, Zelnik-Manor L (2013) What makes a patch distinct? In: Proc IEEE CVPR, pp 1139–1146

  28. Peng Y, Ganesh A, Wright J, Xu W, Ma Y (2012) Rasl: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans Pattern Anal Mach Intell 34(11):2233–2246

    Article  Google Scholar 

  29. Peng H, Li B, Ling H, Hu W, Xiong W, Maybank SJ (2016) Salient object detection via structured matrix decomposition. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2016.2562626

    Article  Google Scholar 

  30. Perazzi F, Krähenbühl P, Pritch Y, Hornung A (2012) Saliency filters: contrast based filtering for salient region detection. In: Proc IEEE CVPR, pp 733–740

  31. Rabinovich A, Vedaldi A, Galleguillos C, Wiewiora E, Belongie S (2007) Objects in context. In: Proc IEEE ICCV, pp 1–8

  32. Ren W Robust dictionary based data representation (Technical report, 2015. Preprint arXiv:1512.03617)

  33. Sharma G, Jurie F, Schmid C (2012) Discriminative spatial saliency for image classification. In: Proc IEEE CVPR, pp 3506–3513

  34. Shen X, Wu Y (2012) A unified approach to salient object detection via low rank matrix recovery. In: Proc IEEE CVPR, pp 853–860

  35. Shi J, Yan Q, Xu L, Jia J (2016) Hierarchical image saliency detection on extended cssd. IEEE Trans Pattern Anal Mach Intell 38(4):717–729

    Article  Google Scholar 

  36. Souly N, Shah M (2016) Visual saliency detection using group lasso regularization in videos of natural scenes. Int J Comput Vis 117(1):93–110

    Article  MathSciNet  Google Scholar 

  37. Sun J, Lu H, Liu X (2015) Saliency region detection based on Markov absorption probabilities. IEEE Trans Image Process 24(5):1639–1649

    Article  MathSciNet  MATH  Google Scholar 

  38. Tong N, Lu H, Zhang Y, Ruan X (2015) Salient object detection via global and local cues. Pattern Recognit 48:3258–3267

    Article  Google Scholar 

  39. Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: Proc. IEEE CVPR, pp 3360–3367

  40. Wang W, Yan Y, Winkler S, Sebe N (2016) Category specific dictionary learning for attribute specific feature selection. IEEE Trans Image Process 25(3):1465–1478

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang W, Yan Y, Zhang L, Hong R, Sebe N (2016) Collaborative sparse coding for multiview action recognition. IEEE MultiMedia 23(4):80–87

    Article  Google Scholar 

  42. Xie Y, Lu H, Yang M M (2013) Bayesian saliency via low and mid level cues. IEEE Trans Image Process 22(5):1689–1698

    Article  MathSciNet  MATH  Google Scholar 

  43. Yan J, Zhu M, Liu H, Liu Y (2010) Visual saliency detection via sparsity pursuit. IEEE Signal Process Lett 17(8):739–742

    Article  Google Scholar 

  44. Yan Y, Yang Y, Meng D, Liu G, Tong W, Hauptmann A G, Sebe N (2015) Event oriented dictionary learning for complex event detection. IEEE Trans Image Process 24(6):1867–1878

    Article  MathSciNet  MATH  Google Scholar 

  45. Yan Y, Ricci E, Subramanian R, Liu G, Lanz O, Sebe N (2016) A multi-task learning framework for head pose estimation under target motion. IEEE Trans Pattern Anal Mach Intell 38(6):1070– 1083

    Article  Google Scholar 

  46. Yan Y, Nie F, Li W, Gao C, Yang Y, Xu D (2016) Image classification by cross-media active learning with privileged information. IEEE Trans Multimed 18 (12):2494–2502

    Article  Google Scholar 

  47. Yang M, Zhang L, Yang J, Zhang D (2013) Regularized robust coding for face recognition. IEEE Trans Image Process 22(5):1753–1766

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang C, Zhang L, Lu H, Ruan X, Yang M H (2013) Saliency detection via graph-based manifold ranking. In: Proc IEEE CVPR, pp 3166–3173

  49. Zhang J, Sclaroff S (2013) Saliency detection: a Boolean map approach. In: Proc IEEE ICCV, pp 153–160

  50. Zhang J, Sclaroff S, Lin Z, Shen X, Price B, Mĕch R (2015) Minimum barrier salient object detection at 80fps. In: Proc IEEE ICCV

  51. Zhang L, Li X, Nie L, Yang Y, Xia Y (2016) Weakly supervised human fixations prediction. IEEE Trans Cybern 46(1):258–269

    Article  Google Scholar 

  52. Zhang D, Han J, Jiang L, Ye S, Chang X (2017) Revealing event saliency in unconstrained video collection. IEEE Trans Image Process 26(4):1746–1758

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang T, Liu S, Ahuja N, Yang M H, Ghanem B (2015) Robust visual tracking via consistent low-rank sparse learning. Int J Comput Vis 111(2):171–190

    Article  MATH  Google Scholar 

  54. Zhao M, Jiao L, Feng J, Liu T (2014) A simplified low rank and sparse graph for semi-supervised learning. Neurocomputing 140:84–96

    Article  Google Scholar 

  55. Zhou X, Yang C, Yu W (2013) Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(3):597–610

    Article  Google Scholar 

  56. Zou W, Kpalma K, Liu Z, Ronsin J (2013) Segmentation driven low-rank matrix recovery for saliency detection. In: Proc BMVC

Download references

Acknowledgments

This research was partially supported by National Natural Science Foundation of China under project No. 61403403, No. 71673293 and China Postdoctoral Science Foundation under project No. 2015M52707.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaxin Xiao.

Additional information

Huaxin Xiao and Weiya Ren has an equal contribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Ren, W., Wang, W. et al. Salient object detection via robust dictionary representation. Multimed Tools Appl 77, 3317–3337 (2018). https://doi.org/10.1007/s11042-017-5118-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5118-7

Keywords

Navigation