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Abstract Motion anomaly detection through video analysis is important for
delivering autonomous situation awareness in public places. Surveillance scene
segmentation and representation is the preliminary step to implementation
anomaly detection. Surveillance scene can be represented using Region Asso-
ciation Graph (RAG), where nodes represent regions and edges denote con-
nectivity among the regions. Existing RAG-based analysis algorithms assume
simple anomalies such as moving objects visit statistically unimportant or
abandoned regions. However, complex anomalies such as an object encircles
within a particular region (Type-I) or within a set of regions (Type-II). In this
paper, we extract statistical features from a given set of object trajectories
and train multi-class support vector machines (SVM) to deal with each type
of anomaly. In the testing phase, a given test trajectory is categorized as nor-
mal or anomalous with respect to the trained models. Performance evaluation
of the proposed algorithm has been carried out on public as well as our own
datasets. We have recorded sensitivity as high as 86% and fall-out rate as low
as 9% in experimental evaluation of the proposed technique. We have car-
ried out comparative analysis with state-of-the-art techniques to benchmark
the method. It has been observed that the proposed model is consistent and
highly accurate across challenging datasets.
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1 Introduction

Learning-based methods have boosted autonomous analysis of high-dimensional
spatio-temporal video data. Conventional visual analysis requires integration
of statistical inference with computational models. Advances in capability of
object localization, recognition, and tracking in videos have allowed researchers
to think of designing autonomous decision making systems in situation aware-
ness applications.

CCTV-based video surveillance has emerged lately and being given more
priority for national security in developing countries. Modern development in
autonomous surveillance has surpassed the legacy of requiring human adminis-
trators to examine several hours of visual feed [1] to summarize socio-economic
scenarios [2] or mining critical forensic evidences [3]. This has been widely
supported by the growth of video analytic capabilities in applications such
as motion detection [4, 5], tracking [6], parsing [7], activity recognition [8],
behavioural understanding [2, 3, 9], traffic analysis [10], parking area monitor-
ing [11], abandoned object detection [12, 13], suspicious activity detection [14],
and scene understanding [15]. With rapid developments in autonomous visual
surveillance, such analytic systems are becoming highly prevalent in environ-
ments such as airports, shopping malls, railway stations and subways in mod-
ern smart cities.

One of the key steps towards complete situation awareness is anomalous
activity detection. The objective is to determine if visually perceived move-
ments of objects can be categorized as normal or abnormal. This can be used
to detect compromise in security. However, what constitutes an abnormal or
anomalous motion has remained a topic of debate. While providing a formal
definition of anomalous activity seems subjective, its quantification is even
more complex. Several behavioural analysis methods have been introduced re-
cently within the visual surveillance domain [16–18]. A major share of these
studies build models over the visual perception of target motion and quantifies
them based on motion characteristics, thus recognizing anomalous activities.
In this context, pattern recognition and machine learning guided techniques
to understand and comprehend target motion through trajectory analysis, is
gaining significance.

Although the high level semantic analysis of a target motion is critical
towards anomaly detection or behavioural studies, target detection and track-
ing still remain as the fundametal steps. It is obvious because analyzing
their motion characteristics is not meaningful without accurate localization
of the targets. However, a major share of detection and tracking algorithms
are mainly challenged by the dynamic nature of surveillance scenes includ-
ing sudden changes in illumination, occlusion, target density, etc. The liter-
ature surrounding target tracking is rich in content and reviews on some of
the key techniques can be found in Yilmaz et al. [19] and [20]. According to
these surveys, target tracking techniques include but not limited to context-
based approaches [21–23], shape-based methods [24], statistical model-based
techniques [25, 26], appearance-based tracking [27], tracking in complex back-
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grounds [28], tracking using particle filtering, [29–31], tracking in the presence
of occlusion [32, 33], fusion-based human tracking [34, 35], etc.

1.1 Related Work

Video anomaly detection algorithms have already been proposed by various re-
searcg groups [36–39]. However, classification of such algorithms can be done
in various ways. Anomaly detection can be achieved by segmenting a video
in temporal domain, where each segment can be classified into a different
category of interest [3, 40]. In such algorithms, the overall change in scene dy-
namics within any chosen time interval is considered as an important feature
towards identifying a temporal segment of interest. Any measured deviations
from these supervised segments of interest is often classified anomalous [8].
Anomaly detection can be performed at holistic as well as individual levels.
While the holistic viewpoint addresses variations among clustered trajecto-
ries within a scene, individual trajectories can also be analysed to determine
video segments containing possible anomalous motion. However, such meth-
ods compute statistical mean of trajectories during training and use them as
a reference to find deviation from normal class centroids. These methods are
popular in visual surveillance applications [41, 42]. More recently, Brun et al.
[11, 15] have proposed a scene partitioning approach to classify trajectories
using unsupervised learning. Main idea in their method is to divide the scene
into non-overlapping zones and to represent it using a graphical structure sim-
ilar to the method proposed in [43]. Brun et al. have clustered car trajectories
recorded from parking zones [44] and human trajectories obtained inside a
busy railway station [45]. The method proposed in [43] has been used to de-
tect very simple anomalies such as a target visiting abandoned or inaccessible
regions. Further, a similar method, often refereed as non-conformal recognition
technique has also been recently introduced for maritime applications [46]. Ac-
cording to [46], a conformal anomaly prediction method using a kernel-density
estimation based non-conformal measure has been applied to detect suspicious
behaviours of ships due to sudden changes in direction, speed or anchoring. In
another study, a Sequential Hausdorff Nearest-Neighbour Conformal Anomaly
Detector (SHNN-CAD) has been proposed by [47] for online learning and se-
quential anomaly detection using motion trajectories. Despite the algorithm
being parameter-light, the performance of the technique in [47] is highly influ-
enced by the learning procedure and the choice of training set.

The study of spatio-temporal models for analysing local context for anoma-
lous event detection has been gaining recent interest. For example, Cheng
et.al. [48] presented a video anomaly detection methodology that aims to
localize a visual scene using hierarchical feature representation and to de-
tect variations using Gaussian Process Regression. This method exploits de-
formable interaction templates modelled using Gaussian Process Regression
for anomaly detection. Although, the theoretical framework was well-founded,
experimental results could only demonstrate about 80% recognition rate on
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different datasets. In another study by [49], the classification of the visual
scene into dominant versus rare activities using spatio-temporal models and
local similarity has been addressed. Activity detection in other domains have
also attracted researchers. For example, Liu et al. [50–54] have proposed a
handful of methods to detect human activities during various types of interac-
tions. The method in [49] engages the Histogram of Oriented Gradient (HOG)
features within an online Fuzzy C-Means clustering technique for behaviour
understanding. In a similar study by [55], several local descriptors have been
used in conjunction with spatio-temporal filtering and local k-nearest neigh-
bour algorithm for composite training and detection of motion anomalies in
video. The local features explored within the work of [55]include persistence,
direction and motion magnitude. Finally, the use of spatio-temporal context
analysis for the accurate anomalous event detection and localization has been
proposed in [56]. Context-aware anomalous activity detection has also been
studied in [43, 57]. Here, it has been demonstrated that in order to deter-
mine scene dynamics that relate to target interactions, it is critical to analyze
the target motion saliency for reliable anomalous activity detection. For ex-
ample, if a target deviates from its normal path or spends additional time
within a confined area of interest, the dynamics need not necessarily suggest
anomalous activity. The activity may be normal depending on the context.
For example, a predefined place within the viewing field may be one of the
region(s)-of-interest, where people usually visit and stays for longer duration.
Thus, contextual information plays a vital role in deciding anomalous activi-
ties.

Despite recent developments in this research domain, the problem of motion
anomaly detection still remains to be challenging due to the following reasons:
a) To identify what constitutes anomalous within the surveillance context and
distinguishing it from normal behaviour, b) To propose a scene independent
model that can work under varying scene conditions, c) To deal with the
complexity in behavioural patterns of moving targets, and d) To operate within
reasonable computational overhead. Majority of the above mentioned state-of-
the-art methodologies do not address the first challenge, whereas the method
proposed in [43] has been shown to handle very simple motion anomalies.
Although the unsupervised approach proposed by Burn et al. [11, 15] can
successfully classify trajectories, this method does not provide any insight on
the type and category of the anomaly. In addition to that, threshold-based
classification approach adopted in [11] may not be applicable under varying
environmental conditions.

1.2 Contributions of the Paper

In this paper, a learning-based methodology has been proposed to detect video
anomalies. The method encapsulates contextual information of object move-
ments within a surveillance scene to detect two types of anomalous situations.
In accomplishing this, we have made the following technical contributions:
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– We propose a statistical approach to extract meaningful features from avail-
able object trajectories and train multi-class support vector machines to
classify a given test trajectory as normal or anomalous.

– We have defined two distinct types of anomalies, namely Type-I and Type-
II. Type-I anomaly is observed when a target is encircling or residing within
a region for a prolonged duration of time. Type-II anomaly demonstrates
a target switching between two or more regions for a sustained period of
time. We present formal mathematical definitions of Type-I and Type-II
anomalies.

– Validation of the proposed methodology on publicly available challenging
datasets and our dataset and providing a comparative analysis with state-
of-the-art techniques in this field of study.

The rest of the paper is organized as follows. In Section 3, the detailed
methodology of the proposed solution is described. Results and discussions
are illustrated in Section 4. Finally, Section 5 concludes the paper.

2 Proposed Methodology

We present our proposed anomaly detection framework in Fig. 1. The proposed
anomaly detection technique operates in two phases, training and testing. In
the training phase, support vector machines are trained using the statistical
features extracted from a given set of trajectories. Therefore, when the scene
is changed, we carry out the training of SVM parameters using the new set
of trajectories available. During testing, a trajectory is verified against the
trained models. Testing of a trajectory is instanteneous and whenever a given
test trajectory violetes the statistical model, we generate the alarm. Statistical
feature extraction has been carried out using a method proposed in [43]. These
steps are described in the following sections.

2.1 Importance-based Scene Segmentation

Consider that a visual surveillance scene at a given instance of time, captured
from a CCTV camera, is represented as an image frame I. Given the scene
I and a set of trajectories ∆ of moving targets inside that scene, the aim
is to build a segmentation map S composed of homogeneous regions, where-
in the criterion of homogeneity is based on the importance of each region
within that scene. Assuming that the original scene I is uniformly divided into
rectangular blocks b, the aim is to decompose I into K number of semantically
homogeneous regions each of which is identified by the region-correspondence
variable Rb ∈ 1, ...,K. Here, the rth region is the set of blocks Br, whose region
correspondence variable equals r, i.e., Br = {b : Rb = r}. The problem of
transforming the scene I into the segmentation map S can be mathematically
formulated as:
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Fig. 1: Flowchart of the proposed anomaly detection algorithm.

I ≃
⋃

r

Br =
⋃

b

{b : Rb = r} ∈ 1, ...,K = S. (1)

Rb = argmax
−→
f (

−→
b ). (2)

∀bf(b) = (ib) . (3)

where,
−→
f (

−→
b ) represents motion dynamics features extracted from each indi-

vidual block that is based on the measurement of an importance criterion ib.
Further, blocks with similar importance (ib) are clustered together in order to
build homogeneous-regions within the scene. The importance criterion corre-
sponding to each block is based on motion dynamics features including the
velocity of targets within each block and the overall time spend by the target
while visiting the block, i.e.

ib = ∀b
ρb

gb
. (4)

where, ρb represents the popularity index of the block b and is normalized
against the total number of times a block b is visited by different targets
(represented as gb).

ρb = ρb +
vo − voj

vo
. (5)
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Fig. 2: (a-b) Segmentations of surveillance scenes (MIT and In-HOUSE
datasets) using the method proposed in [43]. (c-d) Corresponding RAG rep-
resentations of the scenes. For example, in (a) Green - mostly accessed blocks
(L1), Blue - frequently visited blocks (L2), Red - rarely visited blocks (L3)
and Black/Gray - in-accessed blocks (L4).

Here, it is assumed that the instantaneous velocity (voj ) of a target is ex-
pected to be lower than its average velocity (vo). Further to analyzing the
importance distributions from different surveillance scenes, region-labels were
chosen to be discretized into 4 classes {Rb : {1, 2, 3, 4}}: interesting blocks L1

represented as the local maxima within the importance distribution, frequently
visited blocks L2, rarely visited blocks L3 and in-accessed blocks L4.

A simple 8-connected component analysis is engaged for clustering the
class labels indicating relative importance of blocks in order to generate ho-
mogeneous regions. Two examples of the scene segmentation are illustrated in
Fig. 2(a-b).

2.2 Scene Representation using RAG

In order to enable seamless inference on the segmented scene S, a RAG rep-
resented as G(V,E), where v ∈ V and e ∈ E represents nodes and edges of
the graph, is constructed. Each homogeneous region in the segmentation map
S from the previous step is assigned to a corresponding vertex in the RAG
and adjacent regions in the scene are connected through edges. The weight for
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each vertex v(w) in the RAG G is estimated as follows. Assume z independent
trajectory segments pass through a vertex vi, then its weight vi(w) is com-
puted using (6), where sj is the length of the jth trajectory segment passing
through vi. Note that, nodes that are labeled in-accessible, are initialized with
zero weight,

vi(w) =
s1 + s2 + ....+ sz

z
. (6)

The structure of the constructed RAG represents the overall connectivity
of various regions that constitute a surveillance scene. Therefore, given a test
trajectory recorded over the same scene, it is possible to benchmark this test
trajectory against the RAG and hence categorize its motion into normal or
anomaly class.

3 Motion Anomaly Detection

According to the proposed method described so far, a surveillance scene I has
been shown to be transformed into a segmented scene S represented using a
weighted RAG G, based on motion dynamics features extracted from target
trajectories. Some examples of the RAG representation of surveillance scenes
are illustrated in Fig. 2(c-d). Although, the proposed method relies on localised
importance estimated across blocks of regions; estimating importances using
other low-level features such as the use of context [58], trajectory density [11,
15], motion [59, 60], spatio-temporal scene structure [61] are also possible.

In the previous work of [43], it has been shown that the RAG-based rep-
resentation could be exploited to detect anomalies by categorizing movements
of targets into specific regions of interest. However, anomaly in typical surveil-
lance scenes appears in more complex forms. Therefore, in this paper, two
complex types of anomalies have been chosen to be handled. Type-I anomaly
describes motion activity of a target that is encircling or eventually residing
within one specific region of interest for a prolonged duration of time and
Type-II anomaly demonstrate a target switching between two or more regions
of interest. In Fig. 3, an illustration of the two classes of anomalous activities
is depicted. It can be noted that it is possible to generalize any type of motion
anomaly by decomposing it as a combination of Type-I and Type-II anomalies.
For example, the motion pattern representing a random movement of a target
around various regions of a scene can be easily mapped as a combination of
Type-I and Type-II anomalies. If such a motion pattern is associated with vari-
ations in velocity, the time spent in any regions with or without unexpected
repetitive transitions between regions, then such a pattern can be conveniently
classified as anomalous. In Sections 3.1 and 3.2, detailed modeling and analysis
of Type-I and Type-II anomalies are described.
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Fig. 3: Demonstration of possible representation of two types of anomalous
situations described in this paper. (a) Type-I anomalous situation. (b-d) Type-
II anomalous situations.

3.1 Analysis of Type-I Anomaly

In this paper, a Type-I motion anomaly is classified based on the relationship
between the motion characteristics of a target that appears within a region of
the scene and the type (label) of region within the scene that the target visits.
For example, if a target is found to have spent more than usual time within
a region that has been previously labelled either as rarely visited (L3) or not
visited at all (L4), then Type-I anomaly is flagged. Here, the approach could
be to compare the test trajectory of a target to the statistical data acquired
during training to determine deviations. This paper proposes a probabilistic
approach to the classification of Type-I anomaly as defined below. Let a set of
κ training trajectories {τ1, τ2, ..., τκ} be denoted using (7) and a surveillance
scene I be represented using a RAG, say G(V,E), where (8) and (9) represent
set of vertices {v1, v2, ..., vn} and edges {e1, e2, ..., eh}, respectively,

∆ = {τ1, τ2, τ3, ....., τκ}, (7)

V = {v1, v2, ...., vn}, (8)

E = {e1, e2, ....., eh} (9)

Each vertex in the RAG represents one homogeneous region that has been
labeled during training. An edge (e) between two vertices, is drawn if regions
are adjacent. For a given RAG (G) and a set of training trajectories (∆)
of targets within the surveillance scene, the probability p(vj |∆) of a target
visiting vertex (vj) is first estimated. Further, given an unknown trajectory, say
τtest, the objective is to exploit the estimated probability p(vj |∆) as features
for the classification of the motion patterns into anomalous or normal classes.
Consider that the trajectories as given in (7) be referred to as the training set.
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A kth trajectory (τk) can be considered as a time-series data as given in (10),
where (ui, vi) pair denotes the location of the target at a given time instant.

τk = {(u1, v1), (u2, v2), ......, (uo, vo)} (10)

The first step is to transform the trajectory of the moving target repre-
sented as τk into an equivalent path w.r.t the RAG generated from the scene.
Let ρk denote the equivalent path of τk covering m vertices as given in (11),
where |vj | represents the duration of time spent by the target within vertex
vj ,

ρk = (v1, |v1|) → (v2, |v2|) → .....→ (vmk , |vmk |). (11)

Further, the probability of a moving target visiting a particular vertex
in the RAG can be estimated using a set of paths. That is, given a set of
trajectories (∆), it is possible to estimate the general probability of a target
visiting vertex vj using (12), where |ρ

vj
i | and |ρi| represent the duration of

time spent by the target within vertex vj and total duration of its trajectory
(τi), respectively.

p(vj |∆) =
|ρ
vj
1 |+ |ρ

vj
2 |+ ......+ |ρ

vj
k |

|ρ1|+ |ρ2|+ .......+ |ρk|
(12)

Similarly, the probability of a target visiting a vertex vj according to its
own trajectory or path (ρi) can be estimated using (13)

p(vj |ρi) =
|ρ
vj
i |

|ρi|
. (13)

Equations (12) and (13) in combination can be used to prepare the training
samples for classification. In the proposed approach, a separate classifier for
each vertex is trained using the feature vector as given in (14) representing
the trajectory path (ρi) with its corresponding label vector as represented
using (15),

Fρi = [|ρv1i |, |ρv2i |, ......., |ρ
vmi
i |]T , (14)

Lρi = [lv1ρi , l
v2
ρi
, ......., l

vmi
ρi ]T , (15)

where

lvjρi =

{

+1 when p(vj |ρi) ≥ β × p(vj |∆),
−1 when p(vj |ρi) < β × p(vj |∆)

(16)

where β is a multiplication factor that determines the class of a given training
trajectory with respect to all trajectories present in the training set. Based on
the choice of β, data is prepared for training the classifiers. More precisely,
beta is set based on the average time spent by any target within a region
and by comparing a given training trajectory’s motion dynamics against this
average value, a class is determined. Equations (14)-(16) are used to train
the classifiers, one for each vertex. Now, given a test trajectory (τtest) or
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path (ρtest), Fρtest = [|ρv1test|, |ρ
v2
test|, ......., |ρ

vm
test|]

T is computed and used as a
feature vector to classify ρtest against the trained m classifiers. If one of these
classifiers returned a positive value, the test sample ρtest is assumed to contain
Type-I anomaly involving the vertex represented by the index of the respective
classifier. It may be noted that β is a critical parameter that can potentially
influence the accurate classification of motion patterns. Hence, experimental
validation of the effect of the parameter β on the performance of the proposed
model is studied and reported in Section 4.5.3.

3.2 Analysis of Type-II Anomaly

As mentioned earlier, a target could visit several regions of a surveillance
scene in different motion patterns. However, scenarios depicted in Figs. 3(b-
d) can be considered as potential candidates for Type-II anomaly. It is clear
that Type-II anomaly is more complex than Type-I anomaly. In contrast to
Type-I anomaly, where finding the path within the RAG is critical, Type-II
requires finding cycles in a path. Therefore, SVM classifiers are constructed for
each candidate cycle in order to determine anomaly. Formally, the detection of
Type-II anomaly shall exploit the probability p(cj |∆), where cj represents a ℓ-
cycle segment defined when a loop covering ℓ distinct nodes is identified from a
given RAG G and a set of training trajectories (∆). Further, the objective is to
use this probability p(cj |∆), for every possible ℓ-cycles present in G according
to a given training set ∆ to classify an unknown trajectory τtest as anomalous
or normal.

However, detecting cycles of any length (closed walk or simple cycle) in a
graph is a NP-complete problem. It has been shown in [62] that this problem
can be solved in either O(V E) time or O(V ω log V ) time when the length of
the cycle is known a priori. Similarly, Flum and Grohe in [63] have shown that
counting of cycles and paths of length ℓ in both directed and un-directed graphs
is not NP-complete for a given ℓ. It has been proved that, when 3 ≤ ℓ ≤ 7, it is
possible to count all ℓ-cycles (a cycle that includes ℓ distinct nodes) in O(V ω)
time. In order to alleviate the complexity of solving an NP-complete problem
and for simplicity, in this paper, it has been chosen to restrict the search for
cycles in the RAG to a maximum length of 4, i.e., ≤ 4.

Let, C = {c1, c2, ....., cψ} denote a set of cycles of length ≤ 4 present within
a given RAG G. Thus, a number ψ of SVM classifiers are trained, one for each
cycle using a set of training trajectories ∆. However, the features required to
train these classifiers are relatively more complicated than those used during
Type-I anomaly analysis. In addition, searching for ℓ-cycles from a given tar-
get trajectory is also a hard problem. Although, a brute-force approach can
be employed to solve this, such methods are not efficient and to process a
large number of trajectories using this approach would not be computation-
ally tractable. Therefore, the following mechanism has been adopted to find
ℓ-cycles from a given trajectory.
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A path, say ρi ∈ ∆, is initially represented using (11) with each vertex
expanded by its weight. For example, the path given in (11) can be expanded
into ρi = (v1 → v1 → ... → v1)|v1| → (v2 → v2 → ... → v2)|v2| → ..... →
(vm → vm → ... → vm)|vm|, where a vertex in this expanded path is assigned
a unique but non-linearly quantized label. Thus, Ψ non-linear quantization
labels, e.g. q1, q2, ......, qΨ are selected to represent a path. Such an expansion
and non-linear quantization is necessary to determine sparsity of transitions
between any pair of nodes. Now, given an expanded representation of the
path, it can easily be differentiated from qj in order to localize the transitions
between two nodes u and v. Because of using the non-linear quantization
approach, ρi+1−ρi

qj−1−qj
can be used to unambiguously locate transitions between

any pair of nodes. Once all such transitions have been identified, cycles can
be localized by grouping transitions present within each path. By parsing the
path for a contiguous re-appearances of similar transitions, only such desired
transitions can be distinguished from others and extracted. In addition, while
searching for cycles involving nodes, say u and v, the sparsity in transitions is
also checked and if found highly sparse, it is assumed that the path does not
indicate any aberrant behavior.

In the proposed method, the frequency of transitions between any pair of
nodes within a path is used to estimate the probability of transitions for a
given target. Further, given a set of training trajectories (∆), transitions that
represent similar repetitive cycles are marked, features are extracted and fed
into the classifiers. Probabilistic measures similar to those introduced in (12)
and (13) of Section 3.1 are used to train these classifiers. However, the esti-
mation of general as well as individual probability values are done exclusively.
Equations (17)-(18) illustrate the general probability of a ℓ-cycle given all tra-
jectories in the training dataset, where λ represents the minimum number of
times a cycle cj must be repeated by a target in order to consider the trajec-
tory to be anomalous, γi represents those instances where cycle cj appeared
more than λ times and ηi denotes the total number of times that the cycle
appeared within the whole dataset,

p(Xcj > λ|∆)

=
γ1(Xcj > λ+ 1) + γ2(Xcj > λ+ 2) + ...

η1(Xcj = 1) + η2(Xcj = 2) + ...

= p(Xcj = λ+ 1|∆) + p(Xcj = λ+ 2|∆) + ....

(17)

where Xcj indicates the expected number of occurrences of the cycle cj in a
given path,

p(Xcj = λ+ r|∆) =
γ1(Xcj > λ+ r + 1)

η1(Xcj = 1) + η2(Xcj = 2) + ...
. (18)

Similarly, the probability of a ℓ-cycle to appear in a particular path (ρi)
can be estimated with respect to all the cycles present inside it. That is,
Equations (19)-(20) can be used to estimate the probability of a cycle with
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more than λ repetitions, where ωi represents the instances when the cycle
appeared more than λ times and φi denotes the total number of times that
the cycle was identified in ρi,

p(Xcj > λ|ρi)

=
ω1(Xcj > λ+ 1) + ω2(Xcj > λ+ 2) + ...

φ1(Xcj = 1) + φ2(Xcj = 2) + ...

= p(Xcj = λ+ 1|ρi) + p(Xcj = λ+ 2|ρi) + ....

(19)

such that,

p(Xcj = λ+ r|ρi) =
ω1(Xcj > λ+ r + 1)

φ1(Xcj = 1) + φ2(Xcj = 2) + ...
(20)

Equations (17) and (19) are used to prepare the training samples neces-
sary for Type-II anomaly classification using ψ classifiers. A feature vector is
constructed for each training trajectory with its corresponding label vector in
a manner similar to that introduced for Type-I analysis.

Fρi = [|ρc1i |, |ρc2i |, ......., |ρ
cψ
i |]T (21)

Lρi = [lc1ρi , l
c2
ρi
, ......., l

cψ
ρi ]

T . (22)

The corresponding label vector as given in (22) can be generated using (23)

lcjρi =

{

+1 when p(Xcj > λ|ρi) ≥ β × p(Xcj > λ|∆)
−1 when p(Xcj > λ|ρi) < β × p(Xcj > λ|∆)

. (23)

Finally, Equations (21)-(23) are used for training the ψ classifiers, one for
each cycle. Now, given a test trajectory or path (ρtest) as given in (24) can be
computed and used to test ρtest against the ψ classifiers.

Fρtest = [|ρc1test|, |ρ
c2
test|, ......., |ρ

cψ
test|]

T (24)

It is assumed that if at least one of the classifiers returned negative,
then ρtest is considered abnormal. The mathematical formulation of Type-
II anomaly is dependent on only one free parameter λ, which can usually be
decided based on the application requirements. For example, to ensure tighter
security it may be required to enforce that a target should not encircle a set
of regions more than once, where-in λ is set to 1. Although this requirement
may vary from one application to another depending on the nature of security,
it does not affect the performance of the proposed algorithm.
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3.3 Classification

Prediction of unlabelled data is highly important in a typical classification
problem. Researchers have used prediction-based techniques in various appli-
cations [64–67]. The same logic applies to the present work. Since SVM is
a well established predictor, it has been used for the classification of both
Type-I and Type-II anomalies. SVM is a set of supervised learning methods
used for classification, regression and outliers detection [68]. Though, SVM
classifiers are best known for binary classification, however, it has also been
used for multi-class separation [69]. With different kernel functions that can
be specified for a decision function, SVM is widely used to find the optimal
hyper-plane between two classes. In the proposed problem, Fρ from either
Type-I or Type-II anomaly is considered as the feature vector, fed as input
x to these SVM classifiers. The objective is to learn a classifier y = f(x, α),
where α are the parameters of the function using a linear kernel as the decision
function f(.). Given training data (xi, yi) for i = 1, 2, 3......, N with xi ≡ Fρi
and yi ∈ {−1,+1}, a typical 2-D linear classifier is of the form as given in (25),
where , ǫ is the normal to the line and b is the bias. Though, ǫ is known as the
weight vector, it can be learned by through [68]

f(xi) = ǫTxi + b. (25)

Using the perceptron algorithm, ǫ is initialized to 0. Then an iterative
training is performed and Depending on the classification of xi during iterative
processing, ǫ is updated using (26)

ǫ = ǫ+ α sign(f(xi))xi. (26)

The training process is continued till all data points are correctly classified.
At the end of training, final value of ǫ is computed using (27)

ǫ =

N
∑

i

αixi. (27)

However, the above training algorithm works only if the data is linearly
separable. Finally, the line of classification can be determined using (28), where
xi’s are the support vectors of the classifier, i.e.

f(x) =
∑

i

αiyi(x
T
i x) + b (28)

Since ǫTx+ b = 0 on the classifier, ǫ is normalized such that ǫTx+ + b = 1
and ǫTx−+b = −1 hold for positive and negative support vectors, respectively.
The margin between these support vectors is given as 2

||ǫ|| . It is possible that

multiple solutions for ǫ could be obtained that can satisfy above conditions.
However, there is a trade-off between the margin and number of incorrect
classification on training data. Thus, learning parameters of the SVM can be
formulated as a quadratic optimization problem to separate two classes with
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maximum distance, subject to linear constraints, e.g. yi(ǫ
Txi+ b)− 1+ ξi ≥ 0

and ξi ≥ 0, with unique minimum as given in (29), where ξ is the error in
classification. A small η gives larger margins and allows constraints to be easily
ignored and a larger η value makes the constraints hard to ignore. Usually,
SVM finds a large discrimination hyper-plane when a maximum margin is
used.

|ǫ|2 + η

N
∑

i

ξi (29)

4 Experimental Results

In this section, experimental details and results that validate the performance
of the proposed methodology and comparisons against the state-of-the-art us-
ing various dataset are reported.

4.1 Description of Datasets

Three datasets including the Grand Central Station dataset (CUHK) [45],
MIT trajectory dataset [44] and a custom-built in-house dataset were chosen
for performance evaluation. All chosen datasets encapsulate scenarios that
illustrate various types of anomalies as described earlier. While the in-house
dataset represents both Type-I and Type-II anomalies, the public datasets
have scenarios that only demonstrate Type I anomaly.

– The CUHK dataset sequences were recorded in a public place consisting
of a large number of targets moving in real-world under no supervision.
The CUHK sequence is a 34 minutes long video with nearly 700 target-
trajectories. After systematic post-processing, the original set of trajecto-
ries were merged into 40 clean trajectories.

– The MIT dataset was recorded for analyzing movements of cars within a
parking area. The dataset is composed of nearly 40000 trajectories without
manual ground-truth information. The trajectories were obtained using an
automatic tracking algorithm.

– Since, none of the available public datasets contained Type-II anomaly, an
in-house dataset was used for the validation. The custom-built in-house
dataset was recorded for 70 minutes using a static camera hosted on top
of a building. We used static video cameras (25 FPS) to record the videos.
These cameras were setup on top of the buildings to record videos. These
cameras supported HD as well as SD quality video recording. However, we
down-scaled the video frames to 640x480 during processing. The dataset
was prepared to contain 105 trajectories of targets representing public
movement on a busy working day. Some of the chosen trajectories were
recorded in a supervised manner covering actions that demonstrate both
Type-I and Type-II anomalies.
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Fig. 4: (a-c) Original scene, segmentation, and corresponding RAG of the
custom dataset. (d-f) Original scene, segmentation, and corresponding RAG
of the CUHK dataset. (g-i) Original scene, segmentation, and corresponding
RAG of the MIT dataset.

Target-trajectories have been extracted using the target detection and
tracking algorithm proposed in [22]. The Context Tracker (CT) [22] was used
to extract the motion trajectories of the moving targets from these datasets.
This method was found to be robust against small camera movements and
variations in lighting conditions. Trajectories of individual targets were ex-
tracted independently. In all experiments, about 80% of the total trajectories
have been used for training, that is, to create the RAG and for estimating
the probability values as defined in the algorithm mentioned in the previous
section. The remaining 20% of target-trajectories were used for testing. Ex-
periments were validated by measuring the recognition accuracy using 10-fold
cross validation, where-in the whole dataset was divided into 10 parts and
among them 8 parts were considered for training and 2 for testing. Ground-
truth data on Type-I and Type-II anomalies were generated manually. During
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training, in order to create the RAG, the method proposed in [43] was used.
In Fig.4, images representing the original background, segmentation, and the
corresponding RAG representation generate using [43], are illustrated.
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Table 1: Results of classification on Type-I and Type-II anomalies using λ = 1 and β = 1.

Classification
Trajectory # Type-I Type-II

Ground Truth Detected Performance Ground Truth Detected Performance
92 5,8 5,6,8 FP:9 (6,8)(5,6) (5,6)(6,8) FP:1
93 5,8 5,6,8 FN:0 none (1,6)(5,6) FN:0
94 1,6 1,5,6 TN:96 (5,6)(1,6)(6,1,5,6) (1,6)(5,6)(6,1,5,6) TN:4
95 1,5 1,3,5 TP: 24 (1,5) (1,3)(1,5) TP:10
96 1,5 1,5 Precision:72.7% none none Precision: 90.9%
97 1,5,6 1,5,6 (1,5) (1,5)

(1,3)(1,6)(6,1,5,6) (1,3)(1,6)(1,7)
98 1,5,6,8 1,5,6,8,9 (1,8,6,1)(1,8,6,5,1) (6,1,5,6)(1,8,6,1)(1,8,6,5,1)
99 5,6 5,6 Recall:100% (1,6,5,1) (1,6,5,1) Recall:100%
100 1,5,6,8 1,3,5,6,8 (1,5)(1,8)(5,6) (1,5)(1,7)(1,8)(4,5)(5,6)
101 none none Accuracy:93% none none Accuracy:93.3%
102 5,6 4,5,6 (1,5) (1,5)(1,6)
103 5,6 3,4,5,6 (1,5) (1,3)(1,5)
104 1 1 none none
105 1,5 1,5 (1,5) (1,5)
106 none none none none
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Fig. 5: (a) A test trajectory (#94) of the in-house dataset showing Type-
I and Type-II anomalous events. (b) RAG representation of the scene and
corresponding intra-vertex and inter-vertex movements causing Type-I and
Type-II anomalies.

4.2 Results Using Public Dataset

First, experimental results of the proposed method using the CUHK and MIT
public datasets are presented. Out of the 40 trajectories extracted from the
CUHK dataset, 30 have been used for training and the remaining 10 for test-
ing. However, no cross validation was done for this experiment due to limited
number of clean trajectories that were used to build the model. The original
scene, result of segmentation, and the corresponding RAG representation of
the scene are presented in Fig. 4(d-f). As illustrated in the RAG presented in
Fig. 4(f), 19 different possibilities of Type-I anomaly, equivalent to the number
of nodes in the RAG, could be determined. Similarly, it has also been verified
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from the RAG that Type-II anomaly with cj = {2, 3, 4} may appear in the
graph in 32, 72, and 5 ways, respectively. However, no target-trajectory in
real-world representing the Type-II anomaly could be found on this dataset.
p(vj |∆) and p(vj |ρi) vales were used to train classifiers associated with Type-
I anomaly. The value of β as mentioned in 16 has been varied between 0.5
and 3.0 during experimentation. The results of classification are presented in
Table 2.

Table 2: Results of classification (Type-I anomaly) of 10 test trajectories of
CUHK dataset using β = 1.

Trajectory # Classification (Type-I) Performance
Ground Truth Detected

31 18,19 18,19 FP:3
32 none none FN:0
33 none none TN:174
34 15,18 15,18,19 TP: 8
35 14 14 Precision:72.7%
36 none none
37 none none
38 15,17 15,17 Recall:100%
39 none none
40 4 4,11,17 Accuracy:98.3%

On the MIT dataset, a subset of 400 trajectories have been used to vali-
date the proposed algorithm. Out of the 400, 320 were used to construct the
RAG and to estimate the features necessary for training the SVM classifier
as depicted in Fig. 4(i). The remaining 80 trajectories have been used for the
classification of Type-I anomaly. It is clearly evident from the RAG shown in
Fig. 4(i), that Type-I anomaly can possibly appear in 19 different ways. As
per the available ground truth, there were 72 instances of Type-I anomalies
present in the whole test set covering the 80 test trajectories. The proposed al-
gorithm was successful in detecting 109 instances of anomalies assuming β = 1.
When compared against the ground truth, the proposed method recorded false
positive, false negative, true positive, and true negative values of 50, 14, 58,
and 331, respectively. Precision, recall, and accuracy values were found to be
53.7%, 80.5%, and 85.8%, respectively.

Examples of Type-I anomaly occurring in trajectories of the CUKH and
MIT datasets are presented in Fig. 6. It may be observed that the target in
question (represented by trajectory #35 of CUHK dataset) has spent more
time in region 14 as compared to the average staying probability inside that
region from the training data. A similar observation could was also recorded for
trajectory #362 of the MIT dataset and the results are shown in Fig. 6(c-d).
The results shown in Fig. 6(c-d) highlight the occurrence of Type-I anomaly
in nodes 1, 2, and 4, respectively. In general, it has been observed that the
rate of false positives generated by the proposed algorithm could be higher in
comparison to a significantly low number of false negatives (0 in CUHK dataset
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Fig. 6: (a) Frames corresponding to a Type-I anomaly in a test trajectory
(#35) of the CUHK dataset. (b) RAG representation of the scene and corre-
sponding intra-vertex movements causing the anomaly. (a) Frames correspond-
ing to a Type-I anomaly in a test trajectory (#362) of the MIT dataset. (b)
RAG representation of the scene and corresponding intra-vertex movements
causing the anomaly.

and 14 in MIT dataset); thus making the proposed method quite suitable to
support visual analytic solutions in real-time.

4.3 Results Using Custom Dataset

In addition to results on the public datasets, experimental evaluation on a
custom-built in-house dataset has also been performed. The in-house dataset
consists of 105 target-trajectories, out of which 90 have been used for RAG
creation and feature extraction. Within the in-house dataset, Type-I anomalies
can possibly appear in 9 ways matching the number of nodes present in the
RAG as shown in Fig. 4(c). On the other hand, the possibilities of Type-II
anomaly is a factor of the cycle length. Therefore, searching for all possibilities
is computationally intractable and hence experiments have been limited to
search for Type-II anomaly assuming cycles of length ≤ 4. Out of the total 39
instances of Type-II anomalies, cycles with 2, 3, and 4 nodes have appeared 12,
24, and 3 times, respectively. Finally, the total number of Type-I and Type-II
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anomalies present in the in-house dataset as per the ground-truth, are 9 and
39, respectively.

In the analysis of Type-I anomaly, p(vj |∆) and p(vj |ρi) are estimated using
the training set and presented to the classifier. Finally, features are computed
from the test set and are fed to the classifier. Results of classification are
presented in Table 1. For Type-II anomaly, the SVM classifier is trained using
p(Xcj > λ|∆) and p(Xcj > λ|ρi) for cycles of maximum length 5. Further,
it has been assumed that 1 ≤ λ ≤ 6 and β is varied between 0.5 and 3.0.
The target-trajectories for cj = {2, 3,&4} are analysed separately and the
results of classification are summarized in Table 1. Examples of Type-I and
Type-II anomalies from a single test trajectory are presented in Fig. 5. It may
be observed that the chosen test trajectory has Type-I anomaly within the
vertices 1, 5, and 6, whereas, inter-vertex movements between 1-6, 5-6, and 6-
1-5-6 are directly related to Type-II anomalies. It can be verified from Table 1,
that the proposed method is capable of localizing both types of anomalies with
accuracy as high as 93%.

4.4 Comparative Analysis

In this section, a comparative analysis of the proposed approach against the
state-of-the-art method of Brun et al. [11] using the various datasets are pre-
sented. Since the proposed approach and Brun’s method in [11] differ in their
basic methodology and objectives, a direct comparison of results using previ-
ously used metrics may not be possible. However, both methods apply scene
segmentation and trajectory classification. Therefore, variations in sensitiv-
ity and fall-out rate were considered to be good measures for comparison. In
Table 3, the summary comparative results using the MIT dataset is presented.

Following inferences can be drawn from the results presented in 3. Signif-
icantly less false positives have been recorded using the proposed method as
compared to the baseline method of [11]. However, as β is increased beyond
1.0, the rate of change of true positives decreases as explained earlier. On the
contrary, false positive cases are more in comparison to the different variations
of Burn’s method.

4.5 Effect of Key Parameters and Models

In this section, experimental results demonstrating the effect of some of the
key parameters and models are reported.

4.5.1 Varying SVM Parameters

The data fed to the classifiers are linearly separable since the problem has
been formulated in such a way that, any outlier to the consensus movement
(depending on the value of β) formed within the set of training trajectories
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Table 3: Summary of comparisons carried out with Brun’s method [11] and its
variations applied on MIT dataset on a 10 part cross validation scheme.

Method and Variations # of Zones Sensitivity Fall-Out
or Regions

Brun’s Method 0.80 0.3
+ 55 0.85 0.31

Simple Threshold 0.90 0.34
Brun’s Method 0.80 0.29

+ 15 0.85 0.33
Vertex Degree 0.90 0.36
Brun’s Method 0.80 0.32

+ 15 0.85 0.42
Inverted Weight 0.90 0.43
Brun’s Method 0.80 0.20

+ 35 0.85 0.25
Cluster Based 0.90 0.37

Proposed Method (β = 0.5) 9 0.86 0.19
Proposed Method (β = 1.0) 9 0.80 0.15
Proposed Method (β = 2.0) 9 0.34 0.09

Fig. 7: Demonstration of linearly separable data used in the classification (MIT
dataset with respect to region 1).

could be considered as the extreme values while estimating the test trajectory
probabilities. In any case, a soft margin of 1 has been included in the clas-
sification stage to compensate for any errors accumulated from the previous
steps and in order to make classification more generic. In Fig. 7, the evidence
that the data used for classification is linearly separable, is presented.
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4.5.2 Effect of Different Classifiers

In addition to experimenting with the SVM classifier, as an alternative mech-
anism of classification, the effect of the k-NN based classifier in conjunction
with the proposed method has been studied. It can be observed from Table 4
that the k-NN based classifier is not a better choice compared to the SVM
counterpart since it fails to detect more true cases. It may also be observed
that, the value of k has very little effect on the rate of classification.

Table 4: SVM vs kNN Classifiers on MIT dataset (Type-I) analysis with β =
1.0.

Classifier Abnormality @Node 1 Abnormality @Node 7
GT: 21 GT: 25

SVM 23 27
3-NN 16 20
4-NN 16 20
5-NN 16 19

4.5.3 Effect of β

The sensitivity of the proposed method can be influenced by the choice of the
parameter β. Therefore, in order to study the effect of the parameter β on the
proposed method, β is chosen to be varied between 0.5 to 3.0 while the true
positive and false positive rates are measured. Fig. 8 presents the ROC curves
obtained across the different datasets. It can be verified that, high true positive
rates are possible in all three cases. However, when β is increased beyond 3.0,
the rate of increase of false positives, is reduced. This could be because, when
β > 1.0, the classifier is enforced to be biased towards negative samples as
given in (16). Therefore, the rate of change of false positives becomes lower
in comparison to the rate of change of true positives. On the contrary, when
β is reduced below 1.0, the sensitivity of the proposed method is increased
thus classifying a test trajectory as abnormal even under marginal deviation
of the trajectory from its average statistics., thus, increasing the number of
false positives.

In addition, the effect of β that is used to determine the class of a tra-
jectory during preparation of data for training is also presented. It can be
observed that, the number of invalid segments at a particular vertex reduces
as β increases. This is in line with the assumption that increasing the value of
β offers more flexibility to define a training trajectory as abnormal at a par-
ticular vertex. However, increasing the value of β could also introduce more
false negatives which is usually not desired.
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Fig. 8: ROC curves obtained by varying β between 0.5 and 2.5.

4.5.4 Computational Complexity

Given that the number of zones or regions can vary in the Brun’s algorithm,
the computational overhead is expected to increase as the number of vertices
increased. Since the proposed method uses an optimized partitioning of the
scene, testing a trajectory against the trained system is computationally ac-
ceptable and suitable for online analysis. However, the time required to train
the classifiers in the proposed technique is high because of the complex na-
ture of the feature extraction process. It has been observed that, the proposed
method takes 31 seconds to compute the graph and train the classifiers on the
MIT dataset. Testing takes on an average 1-2 seconds, which is often accept-
able given that the training can be done offline.

5 Conclusion

In this paper, a novel approach to detect the presence of various types of
anomalies in the motion of targets within a surveillance scene using a RAG,
is proposed. It has been shown that, the features describing the intra-vertex
and inter-vertex movement dynamics, estimated from a set of training trajec-
tories, can be used to train multi-class SVM to categorize types of anomalies
present in a surveillance scene. The proposed algorithm has been tested on two
benchmark datasets and on a custom-built in-house dataset. Experimental re-
sults have validated the superiority of the proposed method against a chosen
competing baseline method is classifying both Type-I and Type-II anomalies.
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Fig. 9: Variation in number of invalid trajectory segments with respect to
various nodes/regions of the RAG verses β value.

The future of this method can have potential applications in analysing crowd
behaviour in outdoor as well as indoor environments. Further, a single camera
based solution can be designed using the proposed methodology to assist se-
curity agencies responsible for maintaining smooth and safe operations inside
crowded scene such as in railway stations, airports, busy road junctions, etc.
Finally, possible extensions can be made for searching complex anomalies and
be combined with target identification.
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