Skip to main content
Log in

A Universal Image Steganalysis System Based On Double Sparse Representation Classification (DSRC)

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Achieving high rates of detection in low rates of embedding is still a challenging problem in many steganalysis systems. The newly proposed steganalysis system based on sparse representation classifier has shown remarkable detection rates in low embedding rate. In this paper, we propose a new steganalysis system based on double sparse representation classifier. We compare our proposed method with other steganalysis systems which use different classifier (including nearest neighbor, support vector machine, ensemble support vector machine and sparse representation). In all of our experiments, input features to the classifier are fixed and the ability of classifier is examined. Also we provide a complexity analysis in terms of execution time for different classifier. In most of experiments, our proposed method shows superior performance in terms of detection rate and complexity for low embedding rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abavisani M, Joneidi M, Rezaeifar S, Shokouhi SB (2015) A robust sparse representation based face recognition system for smartphones. IEEE Sig Process Med Biol Symp 12:1–6

    Google Scholar 

  2. Aharon M, Elad M, Bruckstein A (2006) K-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322

    Article  MATH  Google Scholar 

  3. Bas P, Filler T, Pevný T (2011) “Break our steganographic system”, The Ins and Outs of organizing BOSS. In Inf Hiding 5:59–70

    Article  Google Scholar 

  4. Candes E, Tao T (2006) Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inf Theory 52(12):5406–5425

    Article  MathSciNet  MATH  Google Scholar 

  5. Candes E, Romberg J, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math 59(8):1207–1233

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen S, Donoho D, Saunders M (2001) Atomic decomposition by basis pursuit. SIAM Rev 43(1):129–159

    Article  MathSciNet  MATH  Google Scholar 

  7. Constantinos P, Aroukatos N (2014) LSB and DCT steganographic detection using compressive sensing. J Inf Hiding Multimedia Sig Process 5(1):20–32

    Google Scholar 

  8. Donoho D (2006) For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Comm Pure Appl Math 59(6):797–829

    Article  MathSciNet  MATH  Google Scholar 

  9. Donoho DL, Elad M, Temlyakov VN (2006) Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans Inf Theory 52(1):6–18

    Article  MathSciNet  MATH  Google Scholar 

  10. Farhat F, Ghaemmaghami S (2015) Towards blind detection of low-rate spatial embedding in image steganalysis. IET Image Process 1:31–42

    Article  Google Scholar 

  11. Friedman JH (2012) Fast sparse regression and classification. Int J Forecast 28(3):722–738

    Article  Google Scholar 

  12. Gao S, Tsang IW, Chia L, Zhao P (2010) Local features are not lonely – Laplacian sparse coding for image classification. Proc IEEE Conf Comput Vis Pattern Recognit

  13. Gemmeke JF, Virtanen T, Hurmalainen A (2011) Exemplarbased sparse representations for noise robust automatic speech recognition. IEEE Trans Audio Speech Lang Process 19(7):2067–2080

    Article  Google Scholar 

  14. Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  15. Goljan M, Fridrich J (2015) CFA-aware features for steganalysis of color images. Proc. SPIE, Electronic Imaging, Media Watermarking, Security, and Forensics, San Francisco

    Google Scholar 

  16. Gong R, Wang H (2012) Steganalysis for GIF images based on colors-gradient co-occurrence matrix. Opt Commun, ELSVIER 11:4961–4965

    Article  Google Scholar 

  17. Holub V, Fridrich J, Denemark T (2014) Universal distortion function for steganography in an arbitrary domain. EURASIP J Inf Secur 1:1–13

    Google Scholar 

  18. Huang J, Yang M (2010) Fast sparse representation with prototypes. Proc IEEE Conf Comput Vis Pattern Recognit 3618–4625

  19. Jiang Z, Lin Z, Davis LS (2011) Learning a discriminative dictionary for sparse coding via label consistent K-SVD. Proc IEEE Conf Comput Vis Pattern Recognit

  20. Jinyang S, Xianting Z, Lei W (2015) Steganalysis using regional correlation and second-order Markov features. Int J Secur Appl 9(1):69–76

    Google Scholar 

  21. Kuang-Yu C, Cheng-Fu L, Chu-Song C, Yi-Ping H (2014) Single-pass K-SVD for efficient dictionary learning, springer. Circuits Syst Signal Process 1:309–320

    Google Scholar 

  22. Li W, Zhou Y, Poh N et al (2013) Feature denoising using joint sparse representation for in-car speech recognition. IEEE Sig Process Lett 20(7):681–684

    Article  Google Scholar 

  23. Liang RZ, Shi L, Wang H, Meng J, Wang JJY, Sun Q, Gu Y (2016) Optimizing top precision performance measure of content-based image retrieval by learning similarity function. In: Pattern Recogn (ICPR), 2016 23rd Int Conf (pp. 2954–2958) IEEE

  24. Liu Q, Wang Q, Wu L (2004) Size of the dictionary in matching pursuit algorithm. IEEE Trans Signal Process 52(12):3403–3408

    Article  MathSciNet  MATH  Google Scholar 

  25. Mairal J, Bach F, Ponce J (2010) Task-driven dictionary learning. IEEE Trans Pattern Anal Mach Intell 34(4):791–804

    Article  Google Scholar 

  26. Malekmohammadi H, Ghaemmaghami S (2009) Steganalysis of LSB based image steganography using spatial and frequency domain features. IEEE Int Conf Multimedia Expo 7:1744–1747

    Google Scholar 

  27. Matinez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233

    Article  Google Scholar 

  28. Nanni L, Brahnam S, Ghidoni S, Menegatti E, Barrier T (2013) A comparison of multi-scale approaches for extracting image descriptors from the co-occurrence matrix. PLoS One, Public Library of Science, Expert Systems with Applications 12:7457–7467

    Google Scholar 

  29. Nene S, Nayar S, Murase H (1996) Columbia object image library (coil-20), technical report CUCS-005-96. Tech Rep

  30. Rubinstein R, Zibulevsky M, Elad M (2010) Double sparsity: Learning sparse dictionaries for sparse signal approximation. IEEE Trans Signal Process 58(3):1553–1564

    Article  MathSciNet  MATH  Google Scholar 

  31. Sigg CD, Dikk T, Buhmann JM (2010) Speech enhancement with sparse coding in learned dictionaries. Proc. ICASSP, Dallas, pp 4758–4761

    Google Scholar 

  32. Srinivas U, Suo Y, Dao M, Monga V, Tran TD (2015) Structured sparse priors for image classification. IEEE Trans Image Process 6:1763–1776

    Article  MathSciNet  Google Scholar 

  33. Tropp JA, Wright SJ (2010) Computational methods for sparse solution of linear inverse problems. Proc IEEE 98(6):948–958

    Article  Google Scholar 

  34. Wang S, Yang J, Sun M, Peng X, Sun M, Zhou C (2012) Sparse tensor discriminant color space for face verification. IEEE Trans Neural Netw Learn Syst 23(6):876–888

    Article  Google Scholar 

  35. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  36. Wright J, Ma Y, Mairal J, Sapiro G, Huwang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 6:1031–1044

  37. Xu B, Wang J, Liu X, Zhang Z (2007) Passive steganalysis using image quality metrics and multi-class support vector machine. Third Int Conf Nat Comput, ICNC 8:215–220

    Google Scholar 

  38. Yamini B, Sabitha R (2013) Blind steganalytic attack as pattern recognition, using K-nearest neighbor classification technique. IEEE 5th Int Conf Adv Comput(ICoAC) 12:543–546

    Google Scholar 

  39. Yu XY, Wang A (2009) An Investigation of genetic algorithm on steganalysis techniques. IEEE Int Conf Intell Inf Hiding Multimedia Sig Process 9:1118–1121

    Google Scholar 

  40. Yu XY, Wang A (2009) Steganalysis based on regression model and bayesion network. IEEE Int Conf Multimedia Inf Netw Secur, MINES'09 11:41–44

    Google Scholar 

  41. Zhang Z, Hu D, Yang Y, Su B (2013) A universal digital image steganalysis method based on sparse representation. Int Conf Comput Intell Secur (CIS) 12:437–441

    Google Scholar 

  42. Zhang S, Wang H, Huang W (2017) Two-stage plant species recognition by local mean clustering and weighted sparse representation classification [J]. Clust Comput:1–9

  43. Zheng Z (2015) A survey of sparse representation: algorithms and applications. IEEE Access 3:490–530

    Article  Google Scholar 

  44. Zou D, Shi YQ, Su W, Xuan G (2006) Steganalysis based on Markov model of thresholded prediction-error image. IEEE Int Conf Multimedia Expo 7:1365–1368

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Farsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali, A., Farsi, H. & Ghaemmaghami, S. A Universal Image Steganalysis System Based On Double Sparse Representation Classification (DSRC). Multimed Tools Appl 77, 16347–16366 (2018). https://doi.org/10.1007/s11042-017-5201-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5201-0

Keywords

Navigation