Skip to main content
Log in

Multiple person tracking based on slow feature analysis

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Object tracking is one of the most important components in numerous applications of computer vision. However, it still has many challenges to be solved, such as occlusion, matching, data association, etc. In this paper, we proposed to utilize slow feature analysis (SFA) method to handle the multiple person tracking problem. First, the part-based model is utilized to detect pedestrian in each frame. Then, a set of reliable tracklets is generated by utilizing spatial-temporal information of detection results. Third, SFA method is leveraged to extract slow-feature for these reliable tracklets. Finally, the traditional graph matching method is utilized to handle data association problem and consequently generate the final trajectory for individual tracking object. Some popular datasets are used in this study. The extensive comparison experiments demonstrate the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bae SH, Yoon K-J (2014) Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. CVPR, pp 1218–1225

  2. Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  3. Bazzani L, Cristani M, Murino V (2012) Decentralized particle filter for joint individual-group tracking. In: CVPR, pp 1886–1893

  4. Benfold B, Reid ID (2011) Stable multi-target tracking in real-time surveillance video. In: The 24th IEEE conference on computer vision and pattern recognition, CVPR 2011, Colorado Springs, CO, USA, 20-25 June 2011, pp 3457–3464

  5. Benfold B, Reid I (2011) Stable multi-target tracking in real-time surveillance video. In: CVPR, pp 3457–3464

  6. Chang X, Yang Y (2016) Semi-supervised feature analysis by mining correlations among multiple tasks. In: IEEE transactions on neural networks and learning systems (99), pp 1–12

  7. Chang X, Ma Z, Lin M, Yang Y, Hauptmann AG (2017) Feature interaction augmented sparse learning for fast kinect motion detection. IEEE Trans Image Process 26(8):3911–3920

    Article  MathSciNet  Google Scholar 

  8. Chang X, Ma Z, Yang Y, Zeng Z, Hauptmann AG (2017) Bi-level semantic representation analysis for multimedia event detection. IEEE Trans Cybernetics 47(5):1180–1197

    Article  Google Scholar 

  9. Chang X, Nie F, Wang S, Yang Y, Zhou X, Zhang C (2016) Compound rank-k projections for bilinear analysis. IEEE Trans Neural Netw Learning Syst 27(7):1502–1513

    Article  MathSciNet  Google Scholar 

  10. Chang X, Yu Y, Yang Y, Xing EP (2017) Semantic pooling for complex event analysis in untrimmed videos. IEEE Trans Pattern Anal Mach Intell 39(8):1617–1632

    Article  Google Scholar 

  11. Felzenszwalb PF, McAllester DA, Ramanan D (2008) A discriminatively trained, multiscale, deformable part model. In: 2008 IEEE computer society conference on computer vision and pattern recognition (CVPR 2008), 24–26 June 2008, Anchorage, Alaska, USA. https://doi.org/10.1109/CVPR.2008.4587597

  12. Fisher RB (2004) Pets04 surveillance ground truth data set. In: Sixth IEEE international workshop on performance evaluation of tracking and surveillance, pp 3457–3464

  13. Gall J, Lempitsky VS (2009) Class-specific Hough forests for object detection. CVPR, pp 1022–1029

  14. Gao Y, Dai Q, Wang M, Zhang N (2011) 3d model retrieval using weighted bipartite graph matching. Signal Process Image Commun 26(1):39–47

    Article  Google Scholar 

  15. Gorur P, Amrutur B (2011) Speeded up gaussian mixture model algorithm for background subtraction. In: AVSS, pp 386–391

  16. Granstrom K, Lundquist C (2013) On the use of multiple measurement models for extended target tracking. In: 2013 16th international conference on information fusion (FUSION), pp 1534–1541

  17. Granström K, Orguner U (2012) A phd filter for tracking multiple extended targets using random matrices. IEEE Trans Signal Process 60(11):5657–5671

    Article  MathSciNet  Google Scholar 

  18. Han Z, Ye Q, Jiao J (2008) Online feature evaluation for object tracking using kalman filter. In: ICPR, pp 1–4

  19. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422

    Article  Google Scholar 

  20. Kwon J, Lee KM (2010) Visual tracking decomposition. CVPR, pp 1269–1276

  21. Leal-Taixé L, Pons-Moll G, Rosenhahn B (2011) Everybody needs somebody: modeling social and grouping behavior on a linear programming multiple people tracker. In: ICCV Workshops, pp 120–127

  22. Li Z, Yabuta K, Kitazawa H (2010) Exclusive block matching for moving object extraction and tracking. Ieice Transactions on Information & Systems 93(5):1263–1271

    Article  Google Scholar 

  23. Liu A, Nie W, Gao Y, Su Y (2016) Multi-modal clique-graph matching for view-based 3d model retrieval. IEEE Trans. Image Process. 25(5):2103–2116

    Article  MathSciNet  Google Scholar 

  24. Liu A, Su Y, Jia P-P, Gao Z, Hao T, Yang Z (2015) Multipe/single-view human action recognition via part-induced multitask structural learning. IEEE Trans Cybernetics 45(6):1194–1208

    Article  Google Scholar 

  25. Liu A, Su Y, Nie W, Kankanhalli MS (2017) Hierarchical clustering multi-task learning for joint human action grouping and recognition. IEEE Trans Pattern Anal Mach Intell 39(1):102–114

    Article  Google Scholar 

  26. Luo C, Cai X, Zhang J (2008) Robust object tracking using the particle filtering and level set methods: a comparative experiment. In: IEEE workshop on multimedia signal processing, pp 359–364

  27. Makris A, Prieur C (2014) Bayesian multiple-hypothesis tracking of merging and splitting targets. IEEE Trans Geosci Remote Sens 52(12):7684–7694

    Article  Google Scholar 

  28. Marcenaro L, Morerio P, Regazzoni CS (2012) Performance evaluation of multi-camera visual tracking. In: Ninth IEEE international conference on advanced video and signal-based surveillance, AVSS 2012. Beijing, China, September 18-21, 2012, pp 464–469

  29. Nie W, Liu A, Su Y (2012) Multiple person tracking by spatiotemporal tracklet association. In: AVSS, pp 481–486

  30. Nie W, Liu A, Su Y, Luan H-B, Yang Z, Cao L, Ji R (2014) Single/cross-camera multiple-person tracking by graph matching. Neurocomputing 139:220–232

    Article  Google Scholar 

  31. Nie W, Liu A, Su Y, Wei S (2017) Multi-view feature extraction based on slow feature analysis. Neurocomputing 252:49–57

    Article  Google Scholar 

  32. Oja E (1982) Simplified neuron model as a principal component analyzer. J Math Biol 15(3):267–273

    Article  MathSciNet  Google Scholar 

  33. Oja E (1992) Principal components, minor components, and linear neural networks. Neural Netw 5(6):927–935

    Article  Google Scholar 

  34. Ottlik A, Nagel HH (2008) Initialization of model-based vehicle tracking in video sequences of inner-city intersections. Int J Comput Vis 80(2):211–225

    Article  Google Scholar 

  35. Pellegrini S, Ess A, Van Gool LJ (2010) Improving data association by joint modeling of pedestrian trajectories and groupings. In: ECCV (1), pp 452–465

    Chapter  Google Scholar 

  36. Peng D, Yi Z, Luo W (2007) Convergence analysis of a simple minor component analysis algorithm. Neural Netw 20(7):842–850

    Article  Google Scholar 

  37. Perez P, Vermaak J, Blake A (2004) Data fusion for visual tracking with particles. Proc IEEE 92(3):495–513

    Article  Google Scholar 

  38. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-time object detection with region proposal networks. In: Advances in neural information processing systems, pp 91–99

  39. Schmidhuber J, Prelinger D (1993) Discovering predictable classifications. Neural Comput 5(4):625– 635

    Article  Google Scholar 

  40. Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2013) Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229

  41. Shu G, Dehghan A, Oreifej O, Hand E, Shah M (2012) Part-based multiple-person tracking with partial occlusion handling. In: CVPR, pp 1815–1821

  42. Tu J, Tao H, Huang TS (2006) Online updating appearance generative mixture model for meanshift tracking. In: ACCV (1), pp 694–703

    Chapter  Google Scholar 

  43. Wen L, Lei Z, Lyu S, Li SZ, Yang M-H (2016) Exploiting hierarchical dense structures on hypergraphs for multi-object tracking. IEEE Trans Pattern Anal Mach Intell 38(10):1983–1996. https://doi.org/10.1109/TPAMI.2015.2509979

    Article  Google Scholar 

  44. Weng M, Huang G, Da X (2010) A new interframe difference algorithm for moving target detection. In: 2010 3rd international congress on image and signal processing (CISP), pp 285–289

  45. Weng J, Zhang Y, Hwang W-S (2003) Candid covariance-free incremental principal component analysis. IEEE Trans Pattern Anal Mach Intell 25(8):1034–1040

    Article  Google Scholar 

  46. Yamaguchi K, Berg AC, Ortiz LE, Berg TL (2011) Who are you with and where are you going?. In: CVPR, pp 1345–1352

  47. Zhang L, Li Y, Nevatia R (2008) Global data association for multi-object tracking using network flows. In: CVPR

  48. Zhang Y, Weng J (2001) Convergence analysis of complementary candid incremental principal component analysis. Michigan State University

  49. Zhu L, Zhou J, Song J (2008) Tracking multiple objects through occlusion with online sampling and position estimation. Pattern Recogn 41(8):2447–2460

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National High-Tech Research and Development Program of China (program 863, 2012AA10A401), the Grants of the Major State Basic Research Development Program of China (program 973, 2012CB114405), the National Key Technology R&D Program (2011BAD13B07 and 2011BAD13B04), the National Natural Science Foundation of China (31770904, 21106095), the Natural Science Foundation of Tianjin (15JCYBJC30700), the project of introducing one thousand high level talents in three years (5KQM110003), the Foundation for Introducing Talents to Tianjin Normal University (5RL123), the Academic Innovation Promotion Project of Tianjin Normal University for young teachers (52XC1403), the 131 Innovative Talents Cultivation of Tianjin (ZX110170) and Tianjin Normal University Application and Development Program (52XK1502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, T., Wang, Q., Wu, D. et al. Multiple person tracking based on slow feature analysis. Multimed Tools Appl 77, 3623–3637 (2018). https://doi.org/10.1007/s11042-017-5218-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5218-4

Keywords

Navigation