Skip to main content
Log in

Efficient numerical schemes for Chan-Vese active contour models in image segmentation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduce multi-symplectic Lagrangian variational integrators for solving Chan-Vese active contour models in image segmentation. Energy functionals are discretized firstly, and numerical schemes are derived from discrete Euler-Lagrange equations based on discrete variational principle. Lagrangian variational integrators preserve native differential structure-multi-symplecticity, that makes the numerical methods have a satisfied behavior. Experiments are performed on the benchmark images from literature. We further evaluated the methods in a segmentation database containing 1023 images. It shows that the proposed numerical schemes attain relatively faster convergence rates and better segmentation accuracy. Comparisons with the standard explicit Euler method of the original Chan-Vese model and other fast numerical optimization methods show that the proposed methods have better stability, higher accuracy, and are more robust when dealing with a large number of pictures. This study provides an example for further research to improve the performance of other existing image segmentation methods based on active contour models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adalsteinsson D, Sethian JA (1995) A fast level set method for propagating interfaces. J Contemp Math 118(2):269–277

    MathSciNet  MATH  Google Scholar 

  2. Aubert G, Barlaud M, Faugeras O, Jehan-Besson S (2003) Image segmentation using active contours: Calculus of variations or shape gradients? SIAM J Appl Math 63(6):2128–2154

    Article  MathSciNet  MATH  Google Scholar 

  3. Badshah N, Chen K (2009) On two multigrid algorithms for modeling variational multiphase image segmentation. IEEE Trans Image Process 18(5):1097–1106

    Article  MathSciNet  MATH  Google Scholar 

  4. Bar L, Sapiro G (2009) Generalized newton-type methods for energy formulations in image processing. SIAM Journal on Imaging Sciences 2(2):508–531

    Article  MathSciNet  MATH  Google Scholar 

  5. Boukerroui D (2012) Efficient numerical schemes for gradient vector flow. Pattern Recogn 45(1):626–636

    Article  MATH  Google Scholar 

  6. Bresson X, Esedoḡlu S, Vandergheynst P, Thiran J-P, Osher S (2007) Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and vision 28(2):151–167

    Article  MathSciNet  Google Scholar 

  7. Caselles V, Sapiro G, Kimmel R (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79

    Article  MATH  Google Scholar 

  8. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  9. Chan TF, Esedoḡlu S, Nikolova M (2006) Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J Appl Math 66 (5):1632–1648

    Article  MathSciNet  MATH  Google Scholar 

  10. Chartrand R, Staneva V (2008) A faster-converging algorithm for image segmentation with a modified chan-vese model. In: IPCV, pp 212–216

  11. Csurka G, Perronnin F (2011) An efficient approach to semantic segmentation. Int J Comput Vis 95(2):198–212

    Article  MathSciNet  Google Scholar 

  12. Feddern C, Weickert J, Burgeth B (2003) Level-set methods for tensor-valued images. In: Proceedings of the 2nd IEEE Workshop on Geometric and Level Set Methods in Computer Vision, pp 65–72

  13. Feng K, Qin M (2010) Multisymplectic and variational integrators. In: Symplectic Geometric Algorithms for Hamiltonian Systems. Springer, Berlin Heidelberg, pp 641–661

  14. Focardi M, Mariano PM (2008) Convergence of asynchronous variational integrators in linear elastodynamics. Int J Numer Methods Eng 75:755–769

    Article  MathSciNet  MATH  Google Scholar 

  15. Focardi M, Mariano PM (2009) Discrete dynamics of complex bodies: variational integrators and convergence. Discrete and Continuous Dynamical Systems C B 11:109–130

    MathSciNet  MATH  Google Scholar 

  16. Forsyth DA, Ponce J (2011) Computer vision: a modern approach. Prentice Hall, Upper Saddle River; London

    Google Scholar 

  17. Ge F, Wang S, Liu T (2007) New benchmark for image segmentation evaluation. J Electron Imaging 16(3):033011–033011-16

    Google Scholar 

  18. Kobayashi T, Otsu N (2012) Efficient similarity derived from kernel-based transition probability. In: Computer Vision–ECCV 2012. Springer, pp 371–385

  19. Lankton S, Nain D, Yezzi A, Tannenbaum A (2007) Hybrid geodesic region-based curve evolutions for image segmentation. In: Medical Imaging, International Society for Optics and Photonics, pp 65104U–65104U

  20. Lee S-M, Abbott AL, Clark NA, Araman PA (2005) Active contours on statistical manifolds and texture segmentation. In: IEEE International Conference on Image Processing, 2005. ICIP 2005, vol 3. IEEE, pp III–828

  21. Li Z, Liu Z, Shi W A fast level set algorithm for building roof recognition from high spatial resolution panchromatic images

  22. Marsden JE, Patrick GW, Shkoller S (1998) Multisymplectic geometry, variational integrators, and nonlinear pdes. Commun Math Phys 199(2):351–395

    Article  MathSciNet  MATH  Google Scholar 

  23. Mendi E, Milanova M (2009) Quasi-newton minimization for active contours with chan-vese model. In: IPCV, pp 575–578

  24. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  25. Pan Y, Birdwell JD, Djouadi SM (2006) Efficient implementation of the chan-vese models without solving pdes. In: 2006 IEEE 8th Workshop on Multimedia Signal Processing. IEEE, pp 350–354

  26. Pereyra M, Batatia H, McLaughlin S (2013) Exploiting information geometry to improve the convergence properties of variational active contours. IEEE Journal of Selected Topics in Signal Processing 7(4):700–707

    Article  Google Scholar 

  27. Pi L, Shen C, Li F, Fan J (2007) A variational formulation for segmenting desired objects in color images. Image Vis Comput 25(9):1414–1421

    Article  Google Scholar 

  28. Ren D, Zuo W, Zhao X, et al (2013) Fast gradient vector computation based on augmented Lagrangian method. Pattern Recogn Lett 34(1):219–225

    Article  Google Scholar 

  29. Scheuermann B, Rosenhahn B (2009) Analysis of numerical methods for level set based image segmentation. In: Advances in Visual Computing. Springer, pp 196–207

  30. Scheuermann B, Schlosser M, Rosenhahn B (2013) Efficient pixel-grouping based on dempsters theory of evidence for image segmentation. In: Computer Vision–ACCV 2012. Springer, pp 745–759

  31. Shi Y, Karl WC (2005) A fast level set method without solving pdes. In: ICASSP (2), pp 97–100

  32. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Transactions on Pattern analysis and machine intelligence 22(8):888–905

    Article  Google Scholar 

  33. Sundaramoorthi G, Yezzi A, Mennucci AC (2007) Sobolev active contours. Int J Comput Vis 73(3):345–366

    Article  MATH  Google Scholar 

  34. Sundaramoorthi G, Yezzi A, Mennucci AC, Sapiro G (2009) New possibilities with sobolev active contours. Int J Comput Vis 84(2):113–129

    Article  Google Scholar 

  35. Sussman M, Fatemi E (1999) An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J Sci Stat Comput 20(4):1165–1191

    Article  MathSciNet  MATH  Google Scholar 

  36. Vankerschaver J, Liao C, Leok M Generating functionals and lagrangian pdes, arXiv:1111.0280

  37. Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the mumford and shah model. Int J Confl Manag 50(3):271–293

    MATH  Google Scholar 

  38. Wang Z, Vemuri BC (2004) Tensor field segmentation using region based active contour model. In: Computer Vision-ECCV 2004. Springer, pp 304–315

  39. Zhang L, Song H, Zhang K (2010) Active contours driven by local image fitting energy. Pattern recognition 43(4):1199–1206

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the reviewers for their constructive comments. This research was supported by National Natural Science Foundation of China(Grant No.61170121, No.11401259), Blue Project of Universities in Jiangsu Province Training Young Academic Leaders Object, Fundamental Research Funds for the Central Universities(JUSRR11407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuzhen Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Li, M. & Liao, C. Efficient numerical schemes for Chan-Vese active contour models in image segmentation. Multimed Tools Appl 77, 16661–16684 (2018). https://doi.org/10.1007/s11042-017-5232-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5232-6

Keywords

Navigation