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AbstractContent based video indexing and retrieval (CBVIR) is a lively area of research
which focuses on automating the indexing, retrieval and management of videos. This area
has a wide spectrum of promising applications where assessing the impact of audiovi-
sual productions emerges as a particularly interesting and motivating one. In this paper
we present a computational model capable to predict the impact (i.e. positive or negative)
upon viewers of car advertisements videos by using a set of visual saliency descriptors.
Visual saliency provides information about parts of the image perceived as most important,
which are instinctively targeted by humans when looking at a picture or watching a video.
For this reason we propose to exploit visual information, introducing it as a new feature
which reflects high-level semantics objectively, to improve the video impact categorization
results. The suggested salience descriptors are inspired by the mechanisms that underlie the
attentional abilities of the human visual system and organized into seven distinct families
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according to different measurements over the identified salient areas in the video frames,
namely population, size, location, geometry, orientation, movement and photographic com-
position. Proposed approach starts by computing saliency maps for all the video frames,
where two different visual saliency detection frameworks have been considered and eval-
uated: the popular graph based visual saliency (GBVS) algorithm, and a state-of-the-art
DNN-based approach. Then, frame-level salience descriptors are extracted from these maps.
Next, pooled statistics are used to collapse the obtained frame-level values into video-level
descriptors. Finally, a Logistic regression classifier is built upon the subset of video-level
features resulting from a feature selection stage. Experimental validation, conducted on a
publicly available corpus of 138 commercials collected from YouTube, shows that the pro-
posed salience descriptors are indicative of the impact upon viewers and achieve a similar
performance when compared to a method purely based on aesthetics. Besides, the combined
approach, exploiting both saliency and aesthetics together, ultimately results in better per-
formance than what can be achieved individually. In addition, the seven families of salience
descriptors defined are also compared in terms of classification performance. Finally, a sim-
ilar study is also performed targeting the distinct pooling techniques used in the video-level
feature computation.

KeywordsVisual attention·Saliency·Scene analysis·Aesthetics assessment·Feature
extraction·Video impact assessment

1 Introduction

The explosion of Internet video and the integration of TV and the Internet have brought new
opportunities for advertising-based services. In this regard, growing faster than even search,
video ads are the hottest segment of Internet advertising. Most advertisers have already
incorporated Internet into their strategies developing on-line videos meant to capture the
clicks and the eyeballs of web consumers.
One of the most interesting technological challenges opened up by such services is the

development of computational models for the automatic inference of the affective response
of the viewer by exclusively relying on the content of the video. It has been only in recent
years that content-based approaches for video classification [8] and recommendation [2] are
being researched as an alternative to classical text, tags or metadata based techniques.
Typical CBVIR methods usually decribe the content of the whole image in a uniform

way by means of low-level visual features. For instance, a reasonably effective computa-
tional model that allow recognizing the aesthetic quality of videos was proposed in [20].
This work demonstrated that it is possible to predict the impact of a video onYouTubeusers,
thus determining if it has been positively or negatively perceived, by building a predicting
model based on low-level visual descriptors, such as color or texture. Similarly, Ferńandez-
Martı́nez et al. [19] combined the suggested visual features, respectively related to color,
textures, composition, montage, etc. with some additional features extracted from the audio
content accompanying the video clips, such as rhythm, tonality, timbre, and roughness,
finally improving the performance of the inference system. However, a major drawback
of these methods is that low-level contents often fail to describe the high-level semantic
concepts viewers use to assess a video [49].
Here, the present work aims at contributing to fill the existing gap [43] by evaluat-

ing novel impact models augmented with high-level visual saliency features automatically
extracted from videos. Visual saliency provides information about the areas of an image
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perceived as most important and instinctively targeted by humans when looking at a picture
or watching a video [31]. Given that well-known rules and tips are often followed when
creating a video, visual saliency can be considered as an additional dimension of the data
implicitly embedded in a video by its creator [4], and is commonly accepted as providing
a good approximation of what content is intended to be relevant and generating the great-
est impact. Intuitively, saliency can play an important role in anticipating the impact of a
video, first by accounting for the obvious consideration that not all parts of the image have
the same impact from the perceptual viewpoint, and secondly, by providing information,
derived from different qualitative and quantitative measures over the identified salient areas
in the video images, on how it is grabbing the attention of the viewers. Hence, we will
demonstrate that visual saliency can help to effectively improve the accuracy of predicting
the impact of a video upon its viewers, and to better understand the actual influence of the
visual content on advertising effectiveness in case of car commercials.
Adopting the same annotated set of videos presented in [20], we will start by computing

the saliency map, a topographic map that represents conspicuousness of scene locations,
for all the video frames. Once these maps are available, a number of different salience fea-
tures are extracted from the detected salient regions. These frame-level features will be then
extended to the temporal dimension by means of different pooling techniques yielding the
required features at the video level. Finally, we will employ several well-known classifiers
to assess how much these video-level features may be indicative of the viewers’ apprecia-
tion of the video, taking special notice of how these features can be combined to provide
better results. Figure1shows an overview of the suggested approach.
The paper is organized as follows: after this introduction, Section2presents a litera-

ture review of visual attention modeling and automatic aesthetics assessment techniques.
Section3describes the visual saliency descriptors extracted for the classification task.
Section4presents the classification results including corresponding discussions and issues.
Finally, some conclusions and future work are laid out in Section5.

2 Related work

In this section we give the reader an insight into the current state of the art in visual atten-
tion modeling. First, we cover the fundamental understanding of how visual saliency and

Fig. 1 Overview of the proposed approach
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attention work. In this regard, we refer to two of the most important factors typically used
to categorize the wide variety of existing saliency models, specifically targeting dynamic
models that could be particularly suitable when working with videos. Then, we focus on its
practical application providing relevant and useful examples of how visual saliency mod-
els can be exploited, not just for visual selective attention purposes, but for other practical
applications. Finally, we also review some of the most relevant research works on aesthet-
ics assessment, both applied to still images and videos, and emphasize the novelty of our
approach introducing the successful combination of visual saliency and aesthetics together
for our video classification task.

2.1 Bottom-up versus top-down models

Visual saliency represents the human visual attention within a visual scene. In 2013, A.
Borji, and L. Itti presented a taxonomy of nearly 65 saliency models, which provides a
critical comparison of approaches, their capabilities, and shortcomings [5]. According to
them, a major distinction among models is whether they rely on bottom-up influences, top-
down influences, or a combination of both.
Bottom-up cues are mainly based on the characteristics of a visual scene (stimulus-

driven) [59], whereas top-down cues (goal-driven) are determined by cognitive phenomena
like knowledge, expectations, rewards, and current goals. Bottom-up attention is fast, invol-
untary, and most likely feed-forward [17]. On the other hand, top-down attention is slow,
task-driven, voluntary, and closed-loop [32].
Top-down factors play an important role in attentional selection. For example, pre-

vious studies based on attention experiments [11,65,84] have demonstrated that some
objects or elements, such as text or human faces, are naturally salient for humans, being
totally independent of the way they are shown in the scene. In principle, subjects selec-
tively direct the attention when visualizing a scene depending on both [34], top-down and
bottom-up factors, but in practice models have been focusing on each of them separately.
In this regard, most models fall into the bottom-up category [9,29,69,85], mainly because
bottom-up models provide a generic approximation of attention and deal with aspects that
are independent of any internal state of the subject, thus being easier to understand and to
measure.
Color, intensity, orientation, and movement are just a few examples of bottom-up visual

features that contribute to the selective attention process [40]. Bottom-up attention models
[58] estimate a saliency map with the spatial distribution of saliency, where saliency is mea-
sured as a scalar quantity at every point in the visual field (i.e. every pixel) by determining
how different every given location is from its surround attending to such features. The fun-
damental model by Itti/Koch [32,33] has been probably the most frequently used for this
purpose. Nonetheless, saliency algorithms are constantly evolving, allowing more accurate
saliency maps, for instance, through the identification of salient areas (also known as blobs)
by taking into account dissimilarities in pixels neighborhood.
The Graph-Based Visual Saliency (GBVS) framework, proposed by Harel et al. in 2006,

is another bottom-up visual saliency model based on graph computations which is able to
predict human fixations on the salient regions more reliably than the Itti/Koch algorithm
and other tested algorithms [26]. The detection algorithm consists in two simple main steps:
first, features from the given image are extracted based on biological fixations, building
several feature maps with them. Then, these feature maps are combined and normalized
forming the final saliency map. The salient regions found using this method are also found
to be more cohesive than with other methods while maintaining high accuracy.
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Recently, more graph-based approaches have been proposed. Jiang et al. introduce
the discriminative regional feature integration (DRFI), which integrates regional contrast,
property and backgroundness descriptor together to formulate the master saliency map
[35,80]. Based on graph-based manifold ranking (MR), the work of Yang et al. [83] uti-
lizes the four boundaries of the input image as background prior to extract foreground
queries for the final saliency map. In [44], Li et al. have introduced two major innova-
tion aspects: the erroneous boundary removal process to optimize the image boundary
selection and the regularized random walks ranking to improve the foreground saliency
estimation. Finally, Qin et al. have recently proposed a novel bottom-up method based on
a propagation mechanism dependent on Cellular Automata, an intuitive updating mech-
anism which exploits the intrinsic relevance of similar regions through interactions with
neighbors [66].
At present, deep neural networks (DNNs) have been applied to detect salient objects

achieving state-of-the-art performance [46,79]. These data-driven saliency models aim to
directly capture the semantic properties of salient objects in terms of supervised learning
from a collection of training data with pixel-wise saliency annotations. For instance, the
Deep Contrast Learning model for Salient Object Detection proposed by Li and Yu, is based
on an end-to-end deep contrast network that consists of two complementary components, a
pixel-level fully convolutional stream and a segment-wise spatial pooling stream. The first
stream directly produces a saliency map with pixel-level accuracy from an input image,
while the second one extracts segment-wise features very efficiently, and better models
saliency discontinuities along object boundaries. Finally, a fully connected CRF model is
also incorporated to improve spatial coherence and contour localization in the fused result
from these two streams. Recently reported experimental results have demonstrated that this
deep model significantly improves the state of the art [42].

2.2 Spatial versus spatio-temporal models

Most of the visual saliency models are only considering spatial information such as contrast.
These models are called spatial and were designed at first for still pictures. They are also
commonly referred to as static saliency models as they do not consider the temporal dimen-
sion. However, in the real world, the visual information we receive is constantly changing
due to either egocentric movements or dynamics of the world. The Human Visual System
(HVS) is highly sensitive to the relative motion. Consequently, our visual attention is depen-
dent on both current scene saliency as well as the accumulated knowledge from past scenes.
Hence, there are also models called spatio-temporal based on the motion present in videos.
By applying these dynamic attention models we should be able to capture scene regions that
are important in a spatio-temporal manner.
Video saliency estimation methods reasonably differ from image saliency methods.

While an image can be viewed for a long time, a video frame is only observed for a frac-
tion of second. This difference, among others, turns dynamic saliency into an even more
challenging concept which is gaining interest nowadays. Although there exist approaches
for video saliency detection that specifically address the only use of dynamic features
such as speed or direction [54], most of them extend the static image saliency frame-
work by considering motion and including related dynamic features [14,69]. Despite
dynamic features can be strong predictors of eye movement behavior [30], other works such
as [74] claim that it may not generalize to natural behavior when watching sequences. Par-
ticularly, movie-style edited video clips are found to be problematic stimuli because of their
frequent editorial cuts. These cuts present an unusual and artificial situation for the visual
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system which hampers normal scene perception. More recently, Nguyen et al. [57] have
introduced a comprehensive comparative study of dynamic and static saliency providing two
key findings: first, although different, video saliency is yet quite related with image saliency;
second, camera motions, such as tilting, panning or zooming, affect dynamic saliency
significantly.

2.3 Applications of visual saliency and attention

Visual saliency modeling has captivated researchers since the early 80’s with the Feature
Integration Theory [75]. The original application (and motivation) of saliency maps was
focused on attention and the stimulus and factors affecting it. Hence, many biologically
motivated computational models of visual selective attention have been proposed since then
[5], for example, to examine the degree to which stimulus salience guides the allocation of
attention [63], or alternatively to modify its natural behavior by trying to redirect the human
attention to specifically imposed regions [71].

Although it can be considered a relatively old research topic, it still remains very active
beyond traditional research involving eye-tracking and simulations regarding visual atten-
tion. For example, there are numerous examples of applications which make use of saliency
maps in data processing. In this regard, communication systems dealing with visual data
(i.e. video streams or images) can be improved by identifying which parts of the infor-
mation should be prioritized in data treatment. The principal advantage of this would be
optimizing the use of computational resources needed to deal with visual data, mainly
by allocating the most for those parts of the image that require more detail in line with
the perception of the viewer [62]. Similarly, simulating visual perception for a synthetic
human character and a video surveillance application [13], improving a web usage mining
methodology for finding the most important objects in a web page for helping the design-
ers in the website creation [76], or improving the accuracy of gaze tracking systems in
the context of interactive 3D applications [27], are just another examples of the saliency
utility.
In addition, and as a result of this intense activity, a new trend has also emerged introduc-

ing saliency models as the ground for novel paradigms empowering traditional frameworks
such as image retrieval [4,78], object recognition [22] or activity recognition [18,60,77].
Particularly, it has been demonstrated that features derived from visual saliency models can
be useful at other applications such as multi-class automatic video classification tasks. For
example, salient regions have proven to be successful for deriving global descriptors from
which to perform the classification process of a collection of 924 video clips showing 7
different kinds of sports [67]. Monument recognition models have been also implemented
based on GBVS saliency maps [38]. In this case, the matching process done for new images
of monuments taken from different angles or zooms can be improved, both in time and accu-
racy, by using local visual features, such as Scale Invariant Feature Transform (SIFT) or
Speeded Up Robust Features (SURF), specifically extracted from salient regions according
to the GBVS maps. Finally, feature coding based on saliency detection has also demon-
strated its effectiveness for image classification in elevator videos as well [51] (i.e. overload
or violence detection).

2.4 Aesthetics assessment

Focusing on the relatively new field of aesthetics prediction, within which we can set
this work, it is important to remark that before the first attempts with videos, it was
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firstly studied in still images. One of the earliest approaches towards this domain was
carried out by Savakis et al. fifteen years ago [68]. In that paper, they aimed to find
out which aspects were related to image appeal with a data set of 194 pictures previ-
ously ranked by 11 people. They came with the conclusion that image appeal had to
be addressed through metrics others than those used for measuring image quality. More
recently, Datta et al. [15] proposed 56 low-level image features tested on 3581 pictures
with ratings from the sitePhoto.netand selected the top 15 features related to photographic
aspects like the rule of thirds or the depth of field that achieved together an accuracy of
70.12% in separating low from high rated photographs. Several works followed this one
by adding different contributions. Khan and Vogel [39] carried out a higher-level anal-
ysis to assess the aesthetic quality of photographs, Marchesotti et al. [55] extended the
study in 2011 by using a larger and diverse set of features and achieved an accuracy
of 89.9%.
Applied to videos, automatic aesthetics prediction has not been addressed until a

few years ago. To the best of our knowledge, the first work of this type was per-
formed by [56]. They collected 160 consumer videos from YouTube and performed a
controlled user study to obtain rating labels as ground truth to finally evaluate the use-
fulness of a set of frame-level features inspired by those of [15] and extended to the
temporal dimension, obtaining an accuracy of 73%. Yang et al. [82] used the same data
set and extended the work by making a differentiation between semantically indepen-
dent and dependent features in order to perform a comparative study and [3] proposed a
model with features based on psycho-visual statistics. Furthermore, Ferńandez-Mart́ınez
et al. [20] proposed some new features at the video-level based on cinematographic and
photographic notions and a model which automatically annotates the videos through clus-
tering techniques using YouTube metadata. That paper is the starting point of the present
work.
It is remarkable that very recently the research on aesthetics modeling has been extended

to incorporate also audio features. To our knowledge, the first works in this regard were
[36], in which a wide range of multimodal features is proposed and [19] which offers a
comparative study of the performance between visual and acoustic features.

2.5 Motivations and proposal

Visual saliency analysis of a video serves for identifying where the areas of interest are
located. Then, the observed saliency information allows to infer relevant visual cues on
how viewers are perceiving the video. Particularly, salience features, extracted from those
areas prioritized by visual attention, may be related to their movement, shape, size and other
characteristics that could potentially affect the perception of the viewer. Hence, we will
test whether saliency descriptors can be good indicators of the video impact (i.e. positive
or negative) upon viewers and, in turn, whether they can help to refine and improve the
classification results previously obtained by other methods such as our baseline, purely
based on aesthetics [20].
To the best of our knowledge, this is the very first time that a computational model tar-

gets visual saliency as a successful exploit for the task of classifying commercials based
upon their impact on viewers. Most similar work was performed by [52] who proposed
an approach to advertisement evaluation using salient regions based on foveated imaging.
Nonetheless, the work was strictly focused on static images and its evaluation was primar-
ily focused on validating the saliency estimation process rather than actually assessing the
advertisement impact.
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3 Visual saliency features

The feature extraction process for a video frame begins with a pre-processing step where the
black bars at the borders of the video frames are first removed. Then the process continues
by computing its corresponding saliency map.
For that purpose we have initially decided to use the GBVS1framework [26]. This

saliency detection algorithm has been considered one of the top-performing ones in major
benchmarks [6], although it has already been surpassed by current DNN-based state of
the art algorithms. In this regard, it is important to clarify that the goal of the present
work is not analyzing what detection algorithm yields best results but simply applying a
good-on-average algorithm (such as GBVS) correctly tuned for a reasonably good (though
not necessarily perfect, as we will discuss later) operating point, to demonstrate that our
novel application of saliency is sound and adequate. Nonetheless, and to confirm that
the suggested approach exhibits good generalization capabilities when using other meth-
ods, alternatively, we will also evaluate the use of a current state-of-the-art DNN-based
visual saliency detection framework. Particularly, we will make use of the deep contrast
convolutional neural network (CNN) proposed by Li and Yu [42].
Once the map is available, a number of different salience features can be extracted from

it. In this regard, it is important to point out that computing a saliency map for every frame in
a video can be a really demanding process. This could affect the choice of the visual saliency
algorithm in an attempt to better balance the trade-off between quality and computational
cost [28].
In this work, cost can be reasonably found to be significant given that we process all the

constituent frames of a video. However, although this strategy could be surely optimized,
for instance by reducing the amount of frames to work with by exploiting the high temporal
redundancy in videos or by testing other different and more efficient saliency detection
algorithms, lessening this cost was out of scope for our research which main goal was,
instead, to measure visual saliency in videos and determine its effect on viewers.

3.1 Saliency blobs segmentation and extraction

In the original normalized saliency map obtained for each video frame there exists a set of
high saliency portions in a low-saliency background. The feature extraction process targets
these high saliency portions or saliency blobs, which are considered the informative parts.
Hence, in order to locate them and separate them from their background we need to perform
a segmentation of the saliency map. Particularly, the saliency values are simply thresholded
yielding only two types of regions (i.e. salient or non-salient).
Although more sophisticated segmentation algorithms are reported in the literature, such

as the iterative fitting method proposed by [12] or the mean-shift method proposed by [1],
saliency map thresholding is surely the simplest and most extensively used way to get a
binarized version of a saliency map with the segmentation of salient objects. This method
typically implies evaluating different threshold values so that precision and recall curves
(PR curves) can be used for quantitative evaluation. Particularly, the threshold is varied to
reliably compare how well various saliency detection methods highlight salient regions in
images. Depending on the level of contrast desired, such kind of evaluation usually requires

1An official Matlab implementation of the algorithm is freely available for education purposes at:http://
www.klab.caltech.edu/∼harel/share/gbvs.php.
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large datasets with marked bounding boxes delimiting the salient regions [50], or with
even finer resolution by accurately labelling pixels instead [12]. Typical average precision,
recall, and F-Measure (a weighted harmonic mean of precision and recall), or other recently
emerged performance measures such as Pos@Top (a robust and parameter-free alternative
proposed by Liang et al. [45,47,48] and particularly suitable for evaluating the perfor-
mance of image retrieval systems), among others, can be finally compared against the entire
ground-truth database, thus helping us to find the optimal solution.
However, although of great importance, evaluating or benchmarking different saliency

detection methods, including the adopted ones (GBVS and the deep contrast CNN), has
already been extensively studied in many other publications and is beyond the scope of
the current work. Hence, instead of relying on extensive threshold sampling, particularly
relevant when comparing the overall performance of different algorithms, we have rather
defined a fixed reliable threshold value under several practical assumptions.
First, the proposed approach simply aims at measuring and characterizing attention in

scenes without the need for accurately recognizing shapes and figures. In this regard, our
novel application of saliency differs, for example, from typical object detection and recog-
nition tasks, which usually requires significantly higher accuracies. Hence, although it
certainly relies on saliency map estimation and segmentation, the required performance for
salient regions detection does not need to be perfect for the approach to reasonably succeed
(as it will be confirmed in the experimental section).
Additionally, and aside from ranking well, the salient regions detection algorithm needs

determining an adequate operating point which strongly depends upon the specific appli-
cation and which often happens to be ignored by previously mentioned benchmarking
tests. The operating point is basically determined by the adopted segmentation threshold,
which value yields a particular combination of precision and recall rates. This threshold
offers a way to control the existing trade-off between precision and recall. Particularly,
a higher threshold will typically mean better precision and worse recall than a low
threshold.
As an example of the importance of selecting an adequate threshold, work by [1]

remarks that, in spite of a very poor recall, algorithms yielding high precision results may
be better suited for some particular applications (e.g. gaze-tracking experiments), than
others (e.g. perhaps not for salient object segmentation). In this regard, and also as dis-
cussed by [50], recall rate is not as important as precision for attention detection (recall
favours attention regions to be as large as possible, for example, a 100% recall rate can
be achieved by simply selecting the whole image). The real challenge for attention detec-
tion is commonly referred to as locating the position of a salient object as accurately as
possible, i.e. with high precision. Therefore, and as suggested by many works [7], the eval-
uation measures (e.g. F-measure) are often accordingly set to raise more importance to
precision.
Finally, it is also important to highlight the fact that, in view of typical PR curves obtained

for top-performance salient regions detection algorithms [12], threshold values in the range
between 0.7 and 0.8 mostly provides a reasonably good operating point, successfully meet-
ing the presented performance criteria of maximizing precision on the expense of recall,
but, at the same time, preserving a reasonable recall level.
Hence, based upon the above-mentioned considerations, the threshold has been deter-

mined to 0.75 (maps are normalized between 0 and 1, hence the adoption of such
threshold implies that only particularly salient regions are considered). The adoption of
such threshold has also been validated by means of a qualitative analysis of the saliency
maps obtained for several representative videos of our dataset (which is not labelled with
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saliency information). As a result of this analysis, we have found the observed saliency
detection results to be satisfactory and the adopted threshold to be not too sensitive to
small variations (it can be varied by 10% of its value without significantly affecting the
segmentation results).
Once the segmentation has been performed, in the next step the blobs are extracted by

applying typical connected component labeling to the resulting binarized map [25] (some
typical map examples of the two video classes, “positive” and “negative”, are presented in
Fig.5). Features are then to be calculated from the identified blobs in every video frame by
measuring different properties about their size, shape, movement, and others.
It is important to point out that segmentation typically produces several fragmented

salient regions. In this regard, two different types of descriptors will be extracted from every
frame. First type will be referred to the whole set of blobs by defining a global and unique
measurement of overall saliency computed over all the blobs (e.g. overall salient perimeter
computed as the sum of the perimeters of all the blobs). For the second type, the blobs will
be sorted upon their corresponding area size so that the descriptors will only be computed
over the biggest blob of the frame (i.e. the biggest salient area). Figure2shows the result of
the blob segmentation and extraction process for two different frame samples. The whole
set of features proposed in this project is described below.

3.2 Frame-level saliency features

In this subsection we will describe the set of visual saliency based descriptors that we will
use for constructing our impact prediction model. These video descriptors are to be cal-
culated from the identified blobs in every video frame by measuring different properties.
All the proposed descriptors are inspired and supported either by cognitive psychology
[70] or well-known photographic composition rules [53]. Particularly, descriptors have been
organized into seven distinct families according to their nature, namely population, shape,
geometry, orientation, location, movement and photographic composition related features.

3.2.1 Population features

This subset of features is basically related to the amount of saliency blobs extracted from
the saliency maps. By measuring the number of blobs or attention spots we can categorize
the visual attention either asfocusedor asdivided[70]. Concentration on one spot to the
exclusion of any other is known as focused attention. On the contrary, in cases of divided
attention, more than one source is attended. Since our attentional resources are limited,

(a) (b)

Fig. 2 The image to the left concentrates attention on one single blob, while the image to the right does on
two
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divided attention typically results in a drain on our overall attentional capacity, thus causing
an information loss due to the increased mental effort. Hence, we expect such mental or
attentional effort to be indicative of the viewers’ perception. Presumably, the more attention
spots, the more the effort required, thus possibly exceeding the available capacity of the
viewers and, therefore, producing a failed (or worse) perception.
Specifically, we have defined the following features:

– num-blobs: the number of saliency blobs extracted from each video frame.
– no-blob-frames-percent: percentage of frames with no blobs at all.
– focused-attention-frames-percent: percentage of frames whose biggest salient area
(normalized by the frame area) is lower than a defined threshold (i.e. 3%).

Please note that percentage features are already defined at the video level. Hence, no
pooling technique will apply in both cases, as it will be presented in Section3.3.

3.2.2 Size features

Among the various factors influencing the saliency of a region, works on visual saliency
often rely on two: its size and location. Intuitively, and consistent with human visual per-
ception, larger image regions closer to the image center are more salient. Hence, different
methods [86] have been proposed by defining the saliency of a region as the product of
its size and centerness. In this regard, this work also tries to address these two issues by
introducing and computing additional descriptors linked to such concepts.
Particularly, the following size measurements will be part of our model:

– blob-area: a scalar that specifies the number of pixels that define the entire blob. This
feature has been normalized by the frame area (i.e.W×H,Wbeing the frame width,
andHbeing the frame height, both measured in pixels).

– blob-perimeter: a scalar that specifies the number of pixels which defines the bound-
ary that encloses the blob. Since the blobs are continuous regions, a boundary can be
defined for each blob with no exceptions. This feature has been normalized by the frame
perimeter (i.e. 2W+2H).

– blob-ellipse-area: a scalar that specifies the number of pixels that define the ellipse
that has the same normalized second central moments as the blob region. This feature
has been normalized by the frame area.

– blob-major-axis-length: a scalar that specifies the length (in pixels) of the major axis
of the ellipse that has the same normalized second central moments as the blob region.
This feature has been normalized by the longest line segment that could be described
within the frame (i.e. the diagonal of the frame,

√
W2+H2).

– blob-minor-axis-length: same as previous one but for the minor axis.

– blob-extent: a scalar that specifies the ratio of pixels in the blob region to pixels in the
corresponding bounding box (i.e. the smallest rectangle containing the whole blob). It
is computed as the blob area divided by the area of the bounding box.

3.2.3 Location features

Previously, we have highlighted the importance of size and location for a region to be salient.
Some size related descriptors have already been introduced. In this case, we also propose
to improve our saliency based model by adding an extra set of location cues. Recent works
have shown that subjects tend to fixate the screen center when watching natural scenes [73]
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or natural edited videos [16]. These are the different features we propose for modeling such
behavior:

– blob-centroids: returns the 2-D coordinates that specify the center of mass of the blob.
These coordinates have been normalized by the frame width (i.e.W) and the frame
height (i.e.H), respectively.

– blob-extrema: this set of features returns an 8-by-2 matrix that specifies the extrema
points in the blob region, detailed in Fig.3. Each row of the matrix contains the x- and
y-coordinates of one of the points. Same normalization applies for these coordinates as
well.

3.2.4 Geometrical features

Aside from size and location, there are many other factors that contribute to saliency. As an
example, different feature maps can be defined either at the pixel (e.g. color, intensity, and
orientation [33]), object, or semantic level (e.g. a face tends to attract attention more than
other objects [11]). Among these, object-level information has a significant importance in
the prediction of visual attention.
Usually, object categories are added into the saliency models to improve the predic-

tion of attentional selection [37]. However, despite improving the performance, having an
object detector for each individual possible object does not seem plausible. As an inter-
esting alternative, recent works have proposed an attribute-based framework where each
attribute captures inherent object information that is important to saliency [81]. Inspired by
these approaches we will encode some additional visual cues by handling saliency blobs
as objects from which to calculate a set of similar local shape attributes. These proposed
attributes have already shown to be strongly correlated with attention selection. For exam-
ple, solidity is an important object-level attribute that describes the shape of the objects, and
objects with low solidity values may indicate occluded objects. These are the features we
are extracting from blob contour segmentation:

– blob-complexity: the complexity of a particular blob is denoted as the ratio between
its perimeter and area. With the area of the blob fixed, the complexity is higher if the
contour is longer. A circle has minimum complexity.

– blob-solidity: formally, the blob solidity is a scalar specifying the proportion of the
pixels in its convex hull (i.e. the smallest convex polygon that can contain the blob) that
are also in the blob. The solidity attribute is intuitively similar to the typical convexity
measure (referred to perimeters instead), but it also measures holes in blobs. Hence, if
a blob is convex and without holes in it, it has a solidity value of 1.

Fig. 3 Extrema feature coordinates. This figure illustrates the extrema of two different regions. In the region
on the left, each extrema point is distinct. In the region on the right, certain extrema points (e.g., top-left and
left-top) are identical. Source:http://es.mathworks.com/help/images/ref/regionprops.html
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– blob-eccentricity: the blob eccentricity is represented by the eccentricity value of an
ellipse that has the same second-moments as the blob region. The eccentricity value is
computed as the ratio of the distance between the foci of the ellipse and its major axis
length. An ellipse whose eccentricity is 0 is a circle, while an ellipse whose eccentricity
is 1 is a line segment.

– blob-circularity: this feature measures how similar to a circle is the blob. It is computed
as the ratio between the area of the blob and the area of a circle with the same perimeter.

3.2.5 Orientation features

Orientation is known to be one of the relevant properties of a scene that determines where
to look [61]. Furthermore, it is one of the three more commonly used biologically plausible
pixel-level attributes (i.e. together with color and intensity [33]) in saliency modeling. Either
intentionally or not, the orientation of the blobs may initiate a reflexive shift of attention
to a peripheral location [21]. Therefore, we have decided to explicitly model the following
properties of the blobs that could direct our attention towards a particular direction:

– blob-orientation: a scalar that specifies the angle between the x-axis of the video frame
and the major axis of the ellipse that has the same second-moments as the blob. The
value is in radians, ranging from 0 toπ(i.e. 0 to 180 degrees).

– blob-orientation-bin: orientations are quantized into four bins thus creating an
orientation-based histogram. The histogram channels (i.e.N=4) are evenly spread
over 0 to 180 degrees (thus resulting into horizontal, vertical and the two diagonal ori-
entations). The value of the feature is assigned the bin indexkthat corresponds to the
closest orientation center given byθk=k×

π
4, wherek=0,1,...,N−1.

3.2.6 Motion features

The HVS is highly sensitive to the relative motion. For instance, moving objects in a very
cluttered scene are still able to attract our gaze very effectively, as shown by [10], where
motion contrast accounts for most of the fixations.
By applying a spatio-temporal saliency model in our impact assessment framework we

are assuming the temporal dimension of videos, their salient areas and their evolution, to be
relevant in terms of their impact upon viewers. These are the features we propose for our
impact model to also explicitly account for dynamic behavior:

– speed: our model incorporates the motion information by analyzing the magnitudes
of the biggest blob motion in horizontal and vertical directions. As this feature is cal-
culated by comparing the coordinates of the biggest blob in two consecutive frames,
biggest blobs correspondence between frames is assumed to be maintained through
spatio-temporal continuity.

– acceleration: horizontal and vertical acceleration values are also calculated for the
biggest blob by comparing the corresponding speed values in two consecutive frames.
Same assumption applies with regards to biggest blob continuity between frames.

3.2.7 Rule of thirds features

The rule of thirds (ROT) is one of the most important composition rules used by photog-
raphers to create aesthetically appealing photos. ROT states that placing important objects
along the imaginary thirds lines or around their intersections often produces highly aesthetic
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photos. Detecting ROT from a photo or an image may require complex semantic content
understanding to locate important objects. ROT features were already successfully exploited
as part of an impact assessment model based on aesthetics in [20]. Alternatively, this work
relies on the observed visual saliency to introduce a novel interpretation of such aestheti-
cally inspired features that specifically targets the composition of the important content (i.e.
the detected salient regions in the video sequence).
Saliency analysis has already served the purpose of detecting ROT in photography [53].

Similarly, our method will approximate the important objects in the videos as the seg-
mented and extracted blobs, and their location as their corresponding centroids. Therefore,
our impact model will be improved by introducing a method to automatically determine
whether the blobs follow the ROT principles and accordingly design a range of related fea-
tures, under the assumption that the better the composition of salient regions, the better the
impact upon viewers.

– ROT-distance: distances between the blob centroid coordinates and their nearest imag-
inary third lines are calculated as a measure of the degree of utilization of ROT (i.e.
the shorter the distance, the higher the degree). These distances, the horizontal dis-
tance for the x-axis and the vertical distance for the y-axis, are normalized by the frame
width (i.e.W) and the frame height (i.e.H), respectively. Fig.4a illustrates this feature
calculation.

– ROT-score: horizontal and vertical ROT scores are also calculated. Particularly, we
split every frame into a 12×12 grid mesh such that it aligns well with the third lines and
blob centroids can be assigned a score depending on their distance to third lines. Since
every horizontal or vertical third is divided into 4 segments, distances are quantized into
4 discrete categories by assigning a 1-to-4 score (i.e. 4 when minimum distance to the
nearest third line, 1 when maximum). Figure4b illustrates our centroid location map
and their corresponding horizontal and vertical ROT scores.

3.3 Feature pooling techniques for video-level features generation

Given an input video, the 7 different types of frame-level visual features previously pre-
sented are computed on every video frame. Then, during a post-processing stage, these
frame-level features are extended to the temporal dimension by aggregating and combin-
ing them to yield features at the video level. The procedures that we have used to pool the
features at such level are very simple:

– Average (labeled as AVG), computed as the mean of the features across all the video
frames;

– Standard deviation (labeled as STD), again computed across all the video frames;
– Median (labeled as MED), computed as the median of the features across all the video
frames;

– The mode value (labeled as MOD), computed for the discretized attributes as the most
frequently occurring value among the observed entries along the video sequence. In this
regard it is important to mention that only some features have been pooled like this (i.e.
horizontal and vertical ROT scores, the number of blobs, and the orientation bins).

The combination of the two different types of descriptors introduced in Section3.1,
namely: overall and biggest blob descriptors, together with the seven different families
proposed, plus the four different pooling strategies yields a final set of 452 video-level
features in total.
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(a)

(b)

Fig. 4 The upper image is a sample frame with the distances between the blob centroid and the nearest
horizontal and vertical third lines. The bottom image shows the quantization function or map used to assign
horizontal and vertical scores to the blobs given their centroid location

4 Results and discussion

The current section will describe the research methods we have used in the evaluation
process to gain an adequate understanding of the actual strengths and limitations of the
suggested approach.

4.1 Experimental data

For experimental purposes we have adopted the same annotated set of videos presented
in [20]. This dataset consists of 138 car commercials collected from YouTube and anno-
tated as eitherpositiveornegativeto closely relate to how viewers actually perceive each
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(a)

(b)

Fig. 5 Some representative frames of samples of both classes showing their corresponding segmented salient
regions overlaid

video.2Figure5shows some representative frames, together with their segmented salient
regions overlaid, corresponding to samples of both classes.

4.2 Experimental setup

Our primary goal is demonstrating that saliency based features may be indicative of the
impact of the video on viewers. For that purpose, we have evaluated the classification

2The video corpus with the video IDs and related metadata is available at:http://www.tsc.uc3m.es/∼ffm/
car-commercials-ids-and-metadata.arff.
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performance (i.e. binary classification with the two classes previously introduced) of dif-
ferent impact models built from different numbers of saliency based features (i.e. different
dimensionality). In this regard, a feature selection technique has been used to select the
subset of the most relevant features for use in the model construction.
Besides, we have adopted the aesthetics prediction model based on low-level visual

descriptors presented in [20] as our baseline model. Hence, our novel model based on visual
saliency has been compared to this baseline. Both approaches modeling the impact of videos
upon viewers, the baseline based on aesthetics and the current one based on visual attention,
have been also combined together resulting in a third model or strategy that is also analyzed.
In order to confirm the significance of the proposed features and methods we have also

decided to reevaluate our proposal on the basis of a completely different visual saliency
detection framework: a state-of-the-art deep learning based method.
Moreover, the seven families of descriptors defined in Section3.2have been also com-

pared in terms of classification accuracy. In order to make fair comparisons between the
different families, we have performed identical classification experiments on each of the
seven feature subsets corresponding to the different families.
Finally, a similar study has also been performed targeting the four distinct pooling

techniques used in the video-level feature computation.

4.2.1 Baseline model

This model is based on a family of descriptors according to different visual aspects which
proved to be suitable for automatically predicting aesthetics in our video dataset, namely
video colorfulness (based on CIE Lab color histograms), descriptors related to the rule
of thirds (portions above and below the horizontal imaginary third lines are compared as
a measure of the degree of utilization of ROT), and typical intensity and entropy-based
descriptors. Some temporal segmentation descriptors are also extracted (by detecting the
cuts location in the videos). This baseline model relies on 21 different features in total,
which we will simply refer to asaesthetics featuresin this paper.

4.2.2 Feature selection

To evaluate the performance of a model for a particular dimensionality we have carried out
a feature selection analysis so that we can evaluate the worth of every feature, rank them,
and select the subset of the best ones fitting the specified dimensionality (and providing best
information about the data and their classes).
In order to do so, we made use of the well-known WEKA machine learning software,

from the University of Waikato in New Zealand [24]. This tool provides a set of feature
selection algorithms, from which we have pickedSVMAttributeEval with Ranker[23]. This
algorithm evaluates the worth of every feature by using an SVM classifier and ranks them
by the square of the weight assigned by the SVM. Once features have been ranked we can
simply indicate the number of them to select.

4.2.3 Classification

For classification, as a necessary reference for a valid comparison with the common base-
line approach purely based on aesthetics, we have used a Logistic Regression (LR) model
with ridge estimator, based on the well-known method of le Cessie and van Houwelingen
[41]. In addition, reference results obtained with LR models have been also compared with
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other popular machine learning models, such as Support Vector Machines (SVM), where
we have used a support vector classifier with polynomial kernels based on John C. Platt’s
sequential minimal optimization (SMO) algorithm [64], or standard probabilistic Näıve
Bayes (NB) classifier. All the classifiers have been tested using the implementation of the
WEKA machine learning software.
The performance of each classification experiment has been measured as the accuracy

or the percentage of correctly classified instances. This accuracy is provided by the WEKA
Experimenter tool by averaging 10 random repetitions of a 10-fold cross-validation (10×
10-fold CV) on every data set.

4.3 Comparison between strategies: aesthetic versus attentional information

As previously introduced, our experiments covered the comparison between three different
models or strategies in terms of the descriptors used to build them, namely: based on aes-
thetics features (the baseline), based on visual attention features (in this case derived from
GBVS maps; we will specifically address the comparison between GBVS and CNN results
in the subsequent section), and their combination.
Figure6presents the classification accuracy resulting for each strategy using different

numbers of descriptors. Specifically, we have configured the feature (descriptor) selection
algorithm to provide reduced subsets of top features ranking from 1 up to 50 descriptors
(worse results were systematically observed beyond this point). Please, note that no further
subsets can be selected for more than 21 descriptors in the case of the aesthetics model. Also
note that, in the case of the combined strategy, feature selection is applied to the augmented

Fig. 6 Classification accuracy for different dimensionalities including 95% confidence intervals
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set of features resulting from the aggregation of all the aesthetics and saliency descriptors
together (an early fusion scheme is adopted so that the descriptors are combined in the
feature space before the feature selection and classification).
Besides the accuracy, approximate 95% confidence intervals are also included for reli-

able accuracy assessment. Similarly, we have also considered the ZeroR classifier (i.e.
a classifier that predicts the majority class), which is commonly used for determining
baseline accuracies (i.e. 55.05% in our experiments) and serves well as another reference
performance.
As we can observe, evaluation results have shown that the proposed saliency based fea-

tures are indicative of the impact of the videos on viewers (the saliency based approach has
clearly outperformed zeroR). Particularly, best classification accuracy achieved is 71.74%
when using the top 23 saliency descriptors.
If compared to the baseline aesthetics model, the latter has a top performance of 69.24%

achieved when using the top 11 aesthetics descriptors (also clearly outperforming zeroR).
Observed difference between both top results is found to be non relevant (confidence inter-
vals are overlapped) although the aesthetics based model seems to surpass the saliency one
in configurations with fewer descriptors (i.e. for subsets ranging from 6 to 9 and also for 11
top descriptors).
Once it has been demonstrated that both of them, aesthetics and visual attention mea-

surements, can be separately used to successfully model the viewers’ perception (i.e.
distinguishing between 2 impact or satisfaction levels: videos perceived as good or bad),
the further combination of both should be performed as part of the construction of a more
complete and effective inference model. In this regard, effectiveness has shown to be better
as it can be confirmed straightforward from the best performance achieved by the joint use
of both types, which yields an accuracy of 75.79% for the LR based approach when using
the top 29 descriptors (i.e. a mix of aesthetics and saliency features).
The SVM classifier further improved this result to 77.72% using the top 35 descriptors,

roughly the sum of both previously reported top saliency and aesthetics descriptors subsets,
thus making the best of their combination. SVM are particularly effective in high dimen-
sional spaces (as it can be observed in Fig.6SVM performs particularly better than LR
for bigger subsets). In addition, LR converges to any decision boundary that can divide the
training samples into positive and negative classes, whereas SVM objective causes the deci-
sion boundary to lie (geometrically) mid-way between the support vectors which usually
means better generalization.
With regards to the other evaluated classifier, NB has consistently shown worse perfor-

mance, thus suggesting that the independence assumption between features is general not
true when modeling the video impact.
Finally, when compared to the top performance achieved by the sole use of saliency

or aesthetics features, the combined result is found to be significantly better (confidence
intervals do not overlap), thus confirming the synergy and complementarity of the two
considered approaches.

4.4 Comparison between saliency estimation methods: GBVS versus DNN-based

Although the experimental results presented in the last section have demonstrated that
visual saliency can effectively help to improve the accuracy of predicting the impact of
a video upon its viewers, we have also tried to find out whether these results could be
further improved by adopting top-performance saliency detection methods such as current
state-of-the-art DNN based approaches.
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Fig. 7 Classification accuracy for different saliency detection methods including 95% confidence intervals

In this regard, we have adopted the aforementioned CNN proposed by Li and Yu [42] as
our deep learning solution for visual saliency detection. Specifically, instead of training a
CNN from scratch on our small video dataset (which could lead to a model over adjusted
to the peculiarities of the car commercials), we have rather preferred to directly use their
CNN as a generic large-scale deep learning model, trained on a large-scale dataset and
publicly available for download.3This CNN has been run on our video frames to produce
their corresponding normalized saliency maps. These maps have been then post-processed
by applying exactly the same blob segmentation and extraction procedure as with the GBVS
maps. Finally, the same the set of visual saliency based descriptors have been calculated.
Figure7presents a series plot of results covering the comparison between three dif-

ferent models in terms of the saliency detection method used, namely: based on salience
descriptors computed from GBVS maps, based on salience descriptors computed from
state-of-the-art CNN maps, and finally a third alternative resulting from the combination of
CNN-based salience descriptors together with aesthetics descriptors (our proposal). Specif-
ically, we have adopted the same experimental setup as in the previous section: first, feature
selection to retrieve the top-rank feature subsets from 1 up to 50 descriptors, and then
classification using our reference LR classifier and 10×10-fold cross-validation.
As we can observe, thanks to the improved spatial coherence and contour localization,

the experimental results have demonstrated that the salience descriptors derived from the

3https://drive.google.com/file/d/0BxNhBO0S5JCRbUt0NHBtQWtZb2c/view.
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CNN model (i.e. SaliencyCNN in the Figure) are more powerful than those derived from
the baseline GBVS model (i.e. SaliencyGBVS). Particularly, the deep CNN model has
achieved a top performance of 77% when using the top 32 salience descriptors, clearly
outperforming the best result obtained with the GBVS method, only 71.74% when using
the top 23 descriptors, as we already presented in the previous section.
Finally, once again, we have also evaluated the combination of these CNN-based salience

descriptors together with the aesthetics descriptors that were previously introduced as our
baseline. In this case, the best accuracy found has been 77.12% when using the top 27
subset, a small improvement over the sole use of CNN-based salience descriptors but
again outperforming the best resulting accuracy achieved so far with the GBVS alter-
native (the joint use of both aesthetics and GBVS-based saliency features yielded a top
performance of 75.79% when using the top 29 subset, as it was presented in Section4.3).
Our results also show that the impact of combining both is particularly evident when
making use of more simple and compact models (i.e. less parameters or descriptors),
which have been able to attain similar levels of accuracy as seen with the top-performing
one.
These results also confirm that our approach has consistently demonstrated for both

detection methods, GBVS and DNN based, that visual saliency can be used as a success-
ful exploit for the task of classifying videos based upon their impact on viewers. As could
be expected, the latter has yielded better and particularly encouraging results since, as we
have mentioned earlier, we are simply reusing a large-scale generic CNN model without
any change nor adaptation to our specific problem. This suggests the interesting possibility
to explore using this pre-trained model to bootstrap a better adapted saliency model out of
our very little data. Furthermore, no optimization has been performed regarding the operat-
ing point of the CNN model (i.e. we have used exactly the same segmentation threshold as
with the GBVS approach). Hence, a better setup could be specifically tuned up for it, thus
supporting further improvements.

4.5 Comparison between families of saliency features

Once we have confirmed the validity of the suggested approach, it is also interesting to gain
further insight into which features are the most valuable. Therefore, we have also performed
an additional analysis targeting the comparison between the different families of saliency
based descriptors proposed.
In order to simplify the analysis we have adopted a similar set-up as before: first, fea-

ture selection to retrieve the top descriptors for each family, and then classification with
10×10-fold cross-validation. The only difference is that, instead of presenting another
series plot of results for different families, numbers of features, and classifiers, we have
decided to simplify the analysis by only considering our baseline GBVS based approach,
our reference LR classifier, and making use of a different type of graph to better illustrate
the strength (or weakness) of each individual family: a start chart (also known as spider
chart [72]).
Figure8presents such chart where each spoke represents the top performance achieved

by one of the defined families (concentric grid lines have been included to help visu-
ally comparing the different spokes). Families wind counterclockwise around the chart
in accordance with the introduction order. The number of features required by families
to achieve such results varies in a range from 5 to 15. ZeroR results have also been
included (i.e. inner heptagon) together with 95% confidence intervals for true accuracy
assessment.
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Fig. 8 Top classification accuracy distribution for each specific family of features including 95% confidence
intervals

If we observe the figure we can first mark geometrical, orientation and location families
as the best ones, closely followed by ROT. Statistical evidence does not suffice for perfor-
mance to be considered different among these top families, which can be interpreted as all
being similarly useful to model the impact on viewers.
Next level down would include size and population families, still above the zeroR level,

thus demonstrating to be also reasonably good indicators.
Finally, worst performance has been obtained when using only motion features, which

have failed to act as helpfully as we could have expected, since the HVS is known to
be highly sensitive to motion. According to displayed results, the performance of motion
features is even worse than chance. Hence, this reasonably indicates the need for fur-
ther research on exploring how to consider motion and include related dynamic features.
Nonetheless, it may be also concluded that most of the different types of features tested have
attained notable success, complementing each other reasonably well as can be derived from
the significantly better result obtained when combined together (i.e. 71.74%, as presented
in the previous section).

4.6 Comparison between pooling strategies

Finally, a similar analysis to that presented per family in the previous section has also been
carried out but this time grouping the features in accordance with the pooling technique
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Fig. 9 Top classification accuracy distribution for each specific polling technique including 95% confidence
intervals

used. Same experimental set-up has been adopted to find out which pooling technique
achieves best result individually.
Figure9shows the corresponding start chart where STD clearly emerges as the top-

performing polling technique. On the contrary, MOD turns to be the worst choice since its
performance happens to fall below our zeroR reference. In between, we find AVG and MED,
which do not differ significantly but both clearly succeed in outperforming the baseline,
thus demonstrating their validity.
AVG and MED are different measures of central tendency: both try to capture the dom-

inant value for each feature throughout the whole set of video frames and smooth out
variation. Despite the well-known difference between them (i.e. MED is considered to be
more appropriate when dealing with skewed data), both yield similar results thus suggest-
ing little or no skewness in our data distributions so that resulting means and medians are
closely similar.
MOD is another method occasionally used to find a typical value from a set of data.

However, in this case performance is clearly conditioned by the reduced size of this feature
subset: only ROT scores (horizontal and vertical), number of blobs, and orientation bins are
utilized. Hence, to ensure a fair comparison between this polling alternative and the rest,
mode values should be estimated for the same features as for the rest of the techniques.
STD conveys information about the feature variability, which seems to be even more

informative than central tendencies when modeling the viewer perception of a video.

5 Conclusions and future work

In this paper we have presented a hybrid computational method for predicting the impact
of 138 car advertisements videos on viewers by using both conveyed aesthetic and
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attentional information. Widely used, but limited, low-level aesthetics descriptors are
enhanced and complemented by novel visual saliency map based descriptors which reflect
high-level semantics objectively and help improving the video impact categorization results.
Suggested set of visual saliency descriptors are inspired by the mechanisms that under-

lie the attentional abilities of the human visual system, and have demonstrated to be
indicative of the measured impact upon viewers. Different classification experiments have
been performed for the suggested features to be tested and validated.
First, our model based on features derived from GBVS maps has achieved an accu-

racy of 71.74% in distinguishing between positively and negatively perceived videos. This
result is very similar to the performance produced by a set of low level features specifi-
cally defined and implemented for aesthetics in [19]. On the other hand, the combination
of both models together, saliency and aesthetics, has yielded a top classification accuracy
of 75.79%, which confirms that a more complete and effective visual model of how videos
are perceived can be constructed from features modeling not only their aesthetic value, but
also the mechanisms of human attention (i.e. visual saliency). This result has been con-
firmed and further improved to 77.12% when relying on a current state-of-the-art DNN
based approach for visual saliency detection, which in turn has suggested the need for
deeper analysis of similar approaches to be explored in the future. Particularly, such analy-
sis should focus not only on performance and classification accuracy but also on efficiency
as another major aspect for the feasibility and practical implementation of the suggested
approach.
From a different perspective, saliency determines which part of the visual scene has to

be processed and which ones will be discarded. Hence, saliency maps could be exploited to
constraint the extraction of the aesthetic descriptors to only those particularly salient parts,
which could be considered as a refined (or weighted by saliency) version of our initial
aesthetics model.
Additionally, it would be also worth exploring the combination with new features. In this

regard, it would be particularly interesting to work towards adopting a general attentional
approach by extending visual to aural saliency and incorporating auditory scene analy-
sis. Finally, future research should be extended to different video domains mainly to test
whether the obtained results could be generalized and scaled to different scenarios.
Second, most of the families of salience descriptors suggested have been found to be

suitable for automatically predicting the impact upon viewers with reasonable success. Par-
ticularly, geometrical or local shape attributes, well-known attention selection indicators,
have also shown good performance at distinguishing between good and bad commercials.
Similarly, location or orientation cues, extensively used in saliency modeling, now demon-
strate their importance in modeling viewers’ perception. With regards to composition rules,
again ROT measures succeed as in previous studies, but now under the novel perspective of
attentional selection. On the contrary, it is also remarkable that the subset of motion features
proposed has failed. Related dynamic features have been included by temporally extending
the static image saliency framework to consider motion. However, the poor results obtained
in this case suggest the approach to be inadequate. In future work, we plan to consider alter-
native ways of accounting for the dynamic behavior of saliency, such as using a explicit
video saliency estimation method or identifying camera motions (e.g. pan or zoom) which
are known to affect saliency.
Third, standard pooling strategies have been successfully applied to collapse frame-level

values into video-level descriptors. In this regard, the different degrees of variability cap-
tured by STD measures seem to be particularly well correlated with the perception level
elicited by a video. (i.e. they have been the most successful predictors).
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Obtained results enable further research following the suggested approach to improve,
for instance, the performance of classification and recommendation systems based on
salience and aesthetics characteristics.
From an applicability point of view, proposed solutions could pave the way for a new

generation of recommendation systems that could change the way consumers interact with
multimedia search engines by allowing them to actively use enhanced search features based
on attentional and aesthetics features thus enabling retrieved content to be more related to
the affective response and more personalized.
Similarly, automatic multimedia indexation and retrieval systems may elicit new tax-

onomies guided by the suggested visual descriptors or enable the retrieval of videos
according to some specific characteristics (e.g. retrieve only particularly “good” videos).
Moreover, automatic video summarization technology may also be revamped by summariz-
ing video content by focusing on particularly valuable scenes (i.e. those with a high aesthetic
value or those that attract more attention).
Finally, anticipating the subjective value perceived by the viewers of any audiovisual con-

tent and inferring the level of attention and excitement potentially generated by this content
to these viewers could be a huge competitive advantage. For example, video test screen-
ing processes, typically used to gauge audience reaction, have associated costs and efforts
that could be drastically reduced by making use of the developed technology. Particularly,
it could be exploited to automatically predict the expected success of the video instead of
relying on the assessments provided by a recruited audience.
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features for viewers’ perception classification of youtube car commercials. In: Proceedings of the second
international workshop on speech, language, and audio in multimedia, SLAM’14
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Á. Garćıa-Fauracompleted his Bachelor of Engineering in Telecommunication Technologies and Ser-
vices Engineering in 2016 at Escuela T́ecnica Superior de Ingenieros de Telecomunicacíon, Universidad
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