Skip to main content
Log in

Cryptanalysis of a plaintext-related chaotic RGB image encryption scheme using total plain image characteristics

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recently, a novel plaintext-related RGB image encryption scheme has been proposed, where the security is strengthened by associating the initial condition and control parameter of one logistic map with total plain image characteristics. This paper points out its weakness that the secret location storing the total characteristics cannot adapt to different plain images. Accordingly, we propose a strategy to break this encryption scheme by applying chosen/known plaintext attacks, where the data complexity of attack is reduced to the minimum. The experimental results prove that all the secret matrices can be revealed effectively. Meanwhile, three corresponding improvements are given to guarantee its security, which help to design more secure plaintext-related cryptosystems in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahmad J, Hwang SO (2015) Chaos-based diffusion for highly autocorrelated data in encryption algorithms. Nonlinear Dyn 82(4):1839–1850

    Article  MathSciNet  Google Scholar 

  2. Ahmad M, Khan I R, Alam S (2015) Cryptanalysis of image encryption algorithm based on fractional-order Lorenz-Like Chaotic System. In Emerging ICT for bridging the future - Proceedings of the 49th annual convention of the computer society of India CSI Volume 2 Springer International Publishing: 381–388

  3. Alligood KT, Sauer TD, Yorke JA (1996) Chaos. Springer, Berlin

    MATH  Google Scholar 

  4. Bechikh R, Hermassi H, El-Latif AAA, Rhouma R, Belghith S (2015) Breaking an image encryption scheme based on a spatiotemporal chaotic system. Signal Process-Image 39(PA):151–158

    Article  MATH  Google Scholar 

  5. Cheng P, Yang H, Wei P, Zhang W (2015) A fast image encryption algorithm based on chaotic map and lookup table. Nonlinear Dyn 79(3):2121–2131

    Article  Google Scholar 

  6. Fan H, Li M, Liu D, Zhang E (2017) Cryptanalysis of a colour image encryption using chaotic APFM nonlinear adaptive filter. Signal Process. https://doi.org/10.1016/j.sigpro.2017.08.018

  7. Fridrich J (2011) Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifurcat Chaos 8(6):1259–1284

    Article  MathSciNet  MATH  Google Scholar 

  8. Hsiao HI, Lee J (2015) Color image encryption using chaotic nonlinear adaptive filter. Signal Process 117(C):281–309

    Article  Google Scholar 

  9. Jolfaei A, Wu X, Muthukkumarasamy V (2016) On the security of permutation-only image encryption schemes. IEEE Trans Inf Forensics Security 11(2):235–246

    Article  Google Scholar 

  10. Kerckhoffs A (1978) La cryptographie militaire. J Des Militaires ix:5–83

    Google Scholar 

  11. Li C, Li S, Lo KT (2011) Breaking a modified substitution–diffusion image cipher based on chaotic standard and logistic maps. Commun Nonlinear Sci 16(2):837–843

    Article  MathSciNet  MATH  Google Scholar 

  12. Li C, Zhang LY, Ou R, Wong KW, Shu S (2012) Breaking a novel colour image encryption algorithm based on chaos. Nonlinear Dyn 70(4):2383–2388

    Article  MathSciNet  Google Scholar 

  13. Li M, Xiao D, Zhang Y, Liu H (2014) Attack and improvement of the joint fingerprinting and decryption method for vector quantization images. Signal Process 99(6):17–28

    Article  Google Scholar 

  14. Li M, Zhang JH, Wen WY (2014) Cryptanalysis and improvement of a binary watermark-based copyright protection scheme for remote sensing images. Opt-Int J Light Electron Opt 125(24):7231–7234

    Article  Google Scholar 

  15. Li M, Liu SW, Niu LP, Liu H (2016) Cryptanalyzing a chaotic encryption algorithm for highly autocorrelated data. Opt Laser Technol 86:33–38

    Article  Google Scholar 

  16. Liao X, Chen G, Yin J (2016) Content-adaptive steganalysis for color images. Secur Commun Netw 9(18):5756–5763

    Article  Google Scholar 

  17. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2016) Action2Activity: recognizing complex activities from sensor data. In International Conference on Artificial Intelligence (AAAI Press) 1617–1623

  18. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing complex activities by a probabilistic interval-based model. In Thirtieth AAAI Conference on Artificial Intelligence (AAAI Press):1266–1272 3507–3517

  19. Murillo-Escobar MA, Cruz-Hernández C, Abundiz-Pérez F, López-Gutiérrez RM, Del Campo ORA (2015) A RGB image encryption algorithm based on total plain image characteristics and chaos. Signal Process 109:119–131

    Article  Google Scholar 

  20. Norouzi B, Mirzakuchaki S (2017) Breaking a novel image encryption scheme based on an improper fractional order chaotic system. Multimed Tools Appl 76(2):1817–1826

    Article  Google Scholar 

  21. Norouzi B, Seyedzadeh SM, Mirzakuchaki S, Mosavi MR (2014) A novel image encryption based on hash function with only two-round diffusion process. Multimed Syst 20(1):45–64

    Article  Google Scholar 

  22. Patidar V, Pareek NK, Purohi G, Sud KK (2010) Modified substitution–diffusion image cipher using chaotic standard and logistic maps. Commun Nonlinear Sci 15(10):2755–2765

    Article  MathSciNet  MATH  Google Scholar 

  23. Ramalingam B, Ravichandran D, Annadurai AA, Rengarajan A, Rayappan JBB (2017) Chaos triggered image encryption - a reconfigurable security solution. Multimed Tools Appl 2017:1–24

    Google Scholar 

  24. Rhouma R, Solak E, Belghith S (2010) Cryptanalysis of a new substitution–diffusion based image cipher. Commun Nonlinear Sci 15(7):1887–1892

    Article  MathSciNet  MATH  Google Scholar 

  25. Solak E, Çokal C, Yildiz OT, Biyikoglu T (2012) Cryptanalysis of Fridrich’s chaotic image encryption. Int J Bifurcat Chaos 20(20):1405–1413

    MathSciNet  MATH  Google Scholar 

  26. Song CY, Qiao YL, Zhang XZ (2013) An image encryption scheme based on new spatiotemporal chaos. Optik 124:3329–3334

    Article  Google Scholar 

  27. Teng L, Wang X, Meng J (2017) A chaotic color image encryption using integrated bit-level permutation. Multimed Tools Appl 10:1–14

    Google Scholar 

  28. Usama M, Khan MK, Alghathbar K, Lee C (2010) Chaos-based secure satellite imagery cryptosystem. Comput Math Appl 60(2):326–337

    Article  MathSciNet  MATH  Google Scholar 

  29. USC-SIPI Image Database, University of South California, Signal and Image Processing Institute. http://sipi.usc.edu/database. Accessed 28 Aug 2017

  30. Wang X, Wang T (2012) A novel algorithm for image encryption based on couple chaotic systems. Int J of Mod Phys B 26(30):1250175–1250183

    Article  MATH  Google Scholar 

  31. Wang XY, Yang L, Liu R, Kadir A (2010) A chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn 62(3):615–621

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang X, Teng L, Qin X (2012) A novel colour image encryption algorithm based on chaos. Signal Process 92(4):1101–1108

    Article  MathSciNet  Google Scholar 

  33. Xie EY, Li C, Yu S, Lu J (2016) On the cryptanalysis of Fridrich's chaotic image encryption scheme. Signal Process 132:150–154

    Article  Google Scholar 

  34. Xu Y, Wang H, Li Y, Pei B (2014) Image encryption based on synchronization of fractional chaotic systems. Commun Nonlinear Sci 19(10):3735–3744

    Article  MathSciNet  Google Scholar 

  35. Zhang Y (2011) Plaintext related image encryption scheme using chaotic map. Telkomnika Indonesian J Electric Eng 12(1):635–643

    Google Scholar 

  36. Zhang Y (2014) A chaotic system based image encryption algorithm using plaintext-related confusion. Telkomnika Indonesian J Electric Eng 12(11):7952–7962

    Google Scholar 

  37. Zhang Y (2016) The image encryption algorithm with plaintext-related shuffling. IETE Tech Rev 33(3):1–13

    Article  Google Scholar 

  38. Zhang Y, Li C, Li Q, Zhang D, Shu S (2011) Breaking a chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn 69(3):1091–1096

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang Y, Xia J, Cai P, Chen B (2012) Plaintext related two-level secret key image encryption scheme. Telkomnika Indonesian J Electric Eng 10(6):1254–1262

    Google Scholar 

  40. Zhang W, Wong KW, Yu H, Zhu ZL (2013) An image encryption scheme using reverse 2-dimensional chaotic map and dependent diffusion. Commun Nonlinear Sci 18(8):2066–2080

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang Y, Xiao D, Wen W, Li M (2014) Breaking an image encryption algorithm based on hyper-chaotic system with only one round diffusion process. Nonlinear Dyn 76(3):1645–1650

    Article  Google Scholar 

  42. Zhang E, Yuan P, Du J (2015) Verifiable rational secret sharing scheme in mobile networks. Mob Inf Syst. https://doi.org/10.1155/2015/462345

  43. Zhang E, Li F, Niu B, Wang Y (2016) Server-aided private set intersection based on reputation. Inf Sci. https://doi.org/10.1016/j.ins.2016.09.056

  44. Zhang LY, Liu Y, Pareschi F, Zhang Y, Wong KW, Rovatti R, Setti G (2017) On the security of a class of diffusion mechanisms for image encryption. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2017.2682561

  45. Zhao J, Wang S, Chang Y, Li X (2015) A novel image encryption scheme based on an improper fractional-order chaotic system. Nonlinear Dyn. https://doi.org/10.1007/s11071-015-1911-x

Download references

Acknowledgements

This work was supported through the National Natural Science Foundation of China (Grant Nos. 61602158, U1404604, U1604156), the China Postdoctoral Science Foundation (Grant No. 2016 M600030), the Science Foundation for the Excellent Youth Scholars of Henan Normal University (Grant No. YQ201607), and the Shanghai Natural Science Foundation (Grant No. 6ZR1424600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang An.

Appendix

Appendix

Inequality that the equivalent pixel sum of the plain image P 0 must satisfy is deduced as follows.

If V 0 > V 3, then V 0h  > V 3h > V 3l and V 0l ≥ V 3h > V 3l. And inequality (50) can be deduced by subtracting inequality (30) from (31) as follows:

$$ {V}_{0\mathrm{l}}-{V}_{3\mathrm{h}}<\left(F+{S}_0\times 1000\right)\kern0.5em \operatorname{mod}1-\left(F+{S}_3\times 1000\right)\kern0.5em \operatorname{mod}1<{V}_{0\mathrm{h}}-{V}_{3\mathrm{l}}, $$
(50)

where V 0h − V 3l ∈ (0, 1) and V 0l − V 3h ∈ [0, 1). As the lower and upper bounds range between 0 and 1, inequality (50) can be converted into the following:

$$ {V}_{0\mathrm{l}}-{V}_{3\mathrm{h}}<\left(\left(F+{S}_0\times 1000\right)\kern0.5em \operatorname{mod}1-\left(F+{S}_3\times 1000\right)\kern0.5em \operatorname{mod}1\right)\operatorname{mod}1<{V}_{0\mathrm{h}}-{V}_{3\mathrm{l}}. $$
(51)

In turn, we obtain

$$ {V}_{0\mathrm{l}}-{V}_{3\mathrm{h}}<\left(F+{S}_0\times 1000-F-{S}_3\times 1000\right)\kern0.5em \operatorname{mod}1<{V}_{0\mathrm{h}}-{V}_{3\mathrm{l}}. $$
(52)

Further, we have the following:

$$ {V}_{0\mathrm{l}}-{V}_{3\mathrm{h}}<\left({S}_0\times 1000-{S}_3\times 1000\right)\kern0.5em \operatorname{mod}1<{V}_{0\mathrm{h}}-{V}_{3\mathrm{l}}, $$
$$ \left({V}_0-{V}_3-1\right)/253<\left({S}_0\times 1000-{S}_3\times 1000\right)\kern0.5em \operatorname{mod}1<\left({V}_0-{V}_3+1\right)/253. $$
(53)

If V 0 < V 3, we have the following:

$$ \left({V}_3-{V}_0-1\right)/253<\left({S}_3\times 1000-{S}_0\times 1000\right)\kern0.5em \operatorname{mod}1<\left({V}_3-{V}_0+1\right)/253. $$
(54)

From Eq. (21), we can replace the pixel sum at 10−15 decimal precision with that of the uint8 format. Let \( {\tilde{S}}_0 \) and \( {\tilde{S}}_3 \) be the sums of P 0 ∈ [0, 255] and the known plain image C 3 ∈ [0, 255], respectively.

In (53),

$$ {\displaystyle \begin{array}{l}\left({S}_0\times 1000-{S}_3\times 1000\right)\kern0.5em \operatorname{mod}1\\ {}=\left(\left({S}_0-{S}_3\right)\times 1000\right)\operatorname{mod}1\\ {}=\left(\left({\tilde{S}}_0-{\tilde{S}}_3\right)\times 1000/255\right)\operatorname{mod}1\\ {}=\left({\tilde{S}}_{0\_3}\times 200/51\right)\operatorname{mod}1\\ {}=\left(\left({\tilde{S}}_{0\_3}-51\times n\right)\times 200/51\right)\operatorname{mod}1\\ {}=\left({\tilde{\tilde{S}}}_{0\_3}\times 200/51\right) \operatorname {mod}1\kern1em \end{array}}, $$
(55)

where n is a non-negative integer, \( {\tilde{S}}_{0\_3}={\tilde{S}}_0-{\tilde{S}}_3 \).

$$ {\tilde{\tilde{S}}}_{0\_3}={\tilde{S}}_{0\_3}\operatorname{mod}51=\left({\tilde{S}}_0-{\tilde{S}}_3\right)\operatorname{mod}51=\left({\tilde{\tilde{S}}}_0-{\tilde{\tilde{S}}}_3\right)\operatorname{mod}51, $$
(56)

where \( {\tilde{\tilde{S}}}_0={\tilde{S}}_0\operatorname{mod}51 \) and \( {\tilde{\tilde{S}}}_3={\tilde{S}}_3\operatorname{mod}51 \) are the equivalent pixel sums of plain image P 0 and the known plain image C 3, respectively.

Then, (53) and (54) can be transformed into the following two inequalities:

$$ \left({V}_0-{V}_3-1\right)/253<\left(\left(\left({\tilde{\tilde{S}}}_0-{\tilde{\tilde{S}}}_3\right)\operatorname{mod}51\right)\times 200/51\right)\kern0.5em \operatorname{mod}1<\left({V}_0-{V}_3+1\right)/253. $$
(57)
$$ \left({V}_3-{V}_0-1\right)/253<\left(\left(\left({\tilde{\tilde{S}}}_3-{\tilde{\tilde{S}}}_0\right)\operatorname{mod}51\right)\times 200/51\right)\kern0.5em \operatorname{mod}1<\left({V}_3-{V}_0+1\right)/253. $$
(58)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Li, M., Liu, D. et al. Cryptanalysis of a plaintext-related chaotic RGB image encryption scheme using total plain image characteristics. Multimed Tools Appl 77, 20103–20127 (2018). https://doi.org/10.1007/s11042-017-5437-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5437-8

Keywords

Navigation