Skip to main content
Log in

Image processing for synthesis imaging of mingantu spectral radioheliograph (MUSER)

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

MingantU SpEctral Radioheliograph (MUSER) can generate the images of the Sun with high time, frequency and spatial resolutions. It employs the aperture synthesis (AS) principle to image the Sun with plentiful solar radio activities. Different from general imaging system, AS records sparse Fourier components of the spatial image of the Sun by recurring to electromagnetic interference imaging principle. However, due to the limited number of antennas, the recorded Fourier components is extremely sparse, which results in very blurring images. This problem is equivalent to convoluting an image with a Gaussian smoothing filter in spatial domain. Accordingly, one can recover an image from its burred version by inverse operation of convolution, namely deconvolution, which was widely known as CLEAN algorithm. This algorithm however does not perform well on solar images characterized by extended source instead point source. In this paper, a new method based on compressed sensing (CS) is proposed to replace CLEAN for imaging or preceded by CLEAN. It describes itself a standard optimization function constrained by sparseness. Specifically, it adopts structural group dictionary to represent solar images for exploring both local sparsity and nonlocal self-similarity. We also investigate image reconstruction of MUSER in a wider range by employing several state-of-the-art image deburring methods. The performance analysis reveals that the proposed method contributes image quality improvement of MUSER markedly beyond the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beck A, Teboulle M (1992) Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans Image Process 18(11):2419–2434

    Article  MathSciNet  MATH  Google Scholar 

  2. Bioucas-Dias J, Figueiredo M (2007) A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans on Image Process 16(12):2992–3004

    Article  MathSciNet  Google Scholar 

  3. Bobin J, Starck JL, Ottensamer R (2002) Compressed sensing in astronomy. IEEE Journal of Selected Topics in Signal Processing 2(5):718–726

    Article  Google Scholar 

  4. Buades A, Coll B, Morel JM (2010) A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation 4(2):490–530

    Article  MathSciNet  MATH  Google Scholar 

  5. Candès E, Romberg J, Tao T (2006) Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory 52(2):489–509

    Article  MathSciNet  MATH  Google Scholar 

  6. Cornwell TJ (2008) Multi-Scale Clean Deconvolution of Radio Synthesis Images. IEEE Journal of Selected Topics in Signal Processing 2(5):793–801

    Article  Google Scholar 

  7. Cornwell TJ, Evans KF (1985) A simple maximum entropy deconvolution algorithm. Astron Astrophys 143:77–83

    Google Scholar 

  8. Donoho DL (2006) Compressed sensing. IEEE Trans Inform Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  9. Donoho DL, Huo X (2011) Uncertainty principles and ideal atomic decompositions. IEEE Trans Inform Theory 47:2845–2862

    Article  MathSciNet  MATH  Google Scholar 

  10. Du J, Yan YH, Wang W (2013) A simulation of imaging capabilities for the Chinese spectral radioheliograph. IAU Symposium 8(s294):501–502

  11. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745

    Article  MathSciNet  Google Scholar 

  12. Goldstein T, Osher S (2009) The split Bregman algorithm for L1 regularized problems. SIAM J Imaging Sci 2:323–343

    Article  MathSciNet  MATH  Google Scholar 

  13. Hőgbom JA (1974) Aperture Synthesis with a Non-Regular Distribution of Interferometer Baselines. Astron & Astrophys Suppl 15:417

    Google Scholar 

  14. Li F, Cornwell T, Hoog FD (2011) The application of compressive sampling to radio astronomy I: deconvolution. Astron Astrophys 528(A31):10

  15. Li F, Brown S, Cornwell T, Hoog FD (2012) The application of compressive sampling to radio astronomy II: Faraday rotation measure synthesis. Astron Astrophys 531(A126):8

    Google Scholar 

  16. Ma S, Yin W, Zhang Y, Chakraborty A (2008) An efficient algorithm for compressed MR imaging using total variation and wavelets. In: IEEE conference on computer vision and pattern recognition, Anchorage, AK, June 23–28 2008, pp 1–8. https://doi.org/10.1109/CVPR.2008.4587391

  17. Rubinstein R, Zibulevsky M, Elad M (2010) Double sparsity: Learning sparse dictionaries for sparse signal approximation. IEEE Trans Signal Process 58(3):1553–1564

    Article  MathSciNet  MATH  Google Scholar 

  18. Rubinstein R, Peleg T, Elad M (2013) Analysis k-svd: A dictionary-learning algorithm for the analysis sparse model. IEEE Trans Signal Process 61(3):661–677

    Article  MathSciNet  Google Scholar 

  19. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenomena 60(1):259–268

    Article  MathSciNet  MATH  Google Scholar 

  20. Starck JL, Pantin E, Murtagh F (2002) Deconvolution in Astronomy: A Review. Publ Astr Soc Pacific 114:1051–1069

    Article  Google Scholar 

  21. Su M, Basu M (2002) A hybrid learning system for image deblurring. Pattern Recogn 35(12):2881–2894

    Article  MATH  Google Scholar 

  22. Thompson R, Moran JM, Swenson GW, Wakker BP, Schwarz UJ (1988) The Multi-Resolution CLEAN and its application to the short-spacing problem in interferometry. Astron Astrophys 200:312–322

    Google Scholar 

  23. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  24. Weir N (1992) A multi-channel method of maximum entropy image restoration. Asp Conf Ser Astronomical Data Analysis Software & Systems I 25(3):186

    Google Scholar 

  25. Wen YW, Chan RH, Yip AM (2012) A primal-dual method for total-variation-based wavelet domain inpainting. IEEE Trans Image Process 21(1):106–114

    Article  MathSciNet  MATH  Google Scholar 

  26. Wenger S, Magnor M, Pihlström Y et al (2010) SparseRI: A compressed sensing framework for aperture synthesis imaging in radio astronomy. Publ Astron Soc Pac 122(897):1367–1374

    Article  Google Scholar 

  27. Wiaux Y, Jacques L, Puy G et al (2009) Compressed sensing imaging techniques for radio interferometry. Mon Not R Astron Soc 395(3):1733–1742

    Article  Google Scholar 

  28. Xiang S, Meng G, Wang Y et al (2015) Image deblurring with coupled dictionary learning. Int J Comput Vis 114(2-3):248–271

    Article  MathSciNet  Google Scholar 

  29. Yan YH, Zhang J, Wang W, Liu F, Chen ZJ, Ji GS (2009) The Chinese Spectral Radioheliograph-CSRH. Earth Moon Planet 104:97–100

    Article  Google Scholar 

  30. Yang J, Wrigh J, Huang TS et al (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang J, Zhao DB, Gao W (2014) Group-based Sparse Representation for Image Restoration. IEEE Trans Image Process 23(8):3336–3351

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang J, Zhao DB, Xiong RQ, Ma SW, Gao W (2014) Image Restoration Using Joint Statistical Modeling in a Space-Transform Domain. IEEE Transactions on Circuits System and Video Technology 24(6):915–928

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under grants 61572461, 11790300, 11790305 and 11433006, CAS 100-Talents (Dr. Xu Long), Guangdong Natural Science Foundation for Distinguished Young Scholar under Grant 2016A030306022, Shenzhen Science and Technology Development Project under Grant JSGG20160229202345378.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Yan, Y., Ma, L. et al. Image processing for synthesis imaging of mingantu spectral radioheliograph (MUSER). Multimed Tools Appl 77, 20937–20954 (2018). https://doi.org/10.1007/s11042-017-5545-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5545-5

Keywords

Navigation