Skip to main content
Log in

Power profiling of multimedia sensor node with name-based segment streaming

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Multimedia streaming from miniaturized sensors is attractive for a wide range of web-based applications, including surveillance and Internet of Things (IoT) applications. This paper profiles the power consumption in a wireless video sensor node. We compare the power consumption of video streaming frameworks based on a manifest file, such as the Hypertext Transfer Protocol (HTTP) Live Streaming (HLS), with a Wireless Video Sensor Network Platform compatible Dynamic Adaptive Streaming over HTTP (WVSNP-DASH) framework. The WVSNP-DASH framework is based on independently playable video segments that convey the metadata required for playback in their names (and do not require a manifest file). The power consumption components of the video capture and storage pipeline are evaluated. The presented extensive power profiling measurements provide real-world empirical data on architectural design decisions for multimedia sensor nodes suitable for IoT applications. Our measurement results indicate that the name-based WVSNP-DASH framework is well suited for flexible low-power web-based video streaming from miniaturized sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abas K, Porto C, Obraczka K (2014) Wireless smart camera networks for the surveillance of public spaces. IEEE Comput 47(5):37–44

    Article  Google Scholar 

  2. Accardi K, Yates A (2017) Powertop user’s guide, https://01.org/powertop

  3. Adzic V, Kalva H, Furht B (2012) Optimizing video encoding for adaptive streaming over http. IEEE Trans Consum Electron 58(2):397–403

    Article  Google Scholar 

  4. Akyildiz IF, Melodia T, Chowdhury KR (2007) A survey on wireless multimedia sensor networks. Comput Netw 51(4):921–960

    Article  Google Scholar 

  5. Android power management on i.MX6DQ/DL (2012) https://community.freescale.com/docs/DOC-93884/version/1

  6. Anisi MH, Abdul-Salaam G, Abdullah AH (2015) A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture. Precis Agric 16(2):216–238

    Article  Google Scholar 

  7. Apple Inc. (2012) Example playlist files for use with http live streaming—technical note tn2288. technical report, https://developer.apple.com/library/content/technotes/tn2288/

  8. Bicakci K, Gultekin H, Tavli B (2009) The impact of one-time energy costs on network lifetime in wireless sensor networks. IEEE Commun Lett 13:12

    Article  Google Scholar 

  9. Bourdon A, Noureddine A, Rouvoy R, Seinturier L (2012) Powerapi: A software library to monitor the energy consumed at the process-level. http://abourdon.github.com/powerapi-akka

  10. Braeckman G, Hanca J, Kleihorst R, Munteanu A (2015) Power consumption analysis of a wireless 1K-pixel visual sensor node: to compress or not?. In: Proceedings of the ACM International Conference on Distributed Smart Cameras, pp 170–174

  11. Carrano RC, Passos D, Magalhaes LC, Albuquerque CV (2014) Survey and taxonomy of duty cycling mechanisms in wireless sensor networks. IEEE Commun Surv Tutorials 16(1):181–194

    Article  Google Scholar 

  12. Castellanos WE, Guerri JC, Arce P (2017) SVCEval-RA: An evaluation framework for adaptive scalable video streaming. Multimed Tools Appl 76(1):437–461

    Article  Google Scholar 

  13. Chan K, Lee JY (2016) Improving adaptive HTTP streaming performance with predictive transmission and cross-layer client buffer estimation. Multimed Tools Appl 75(10):5917–5937

    Article  Google Scholar 

  14. Chang H-Y (2018) A connectivity-increasing mechanism of ZigBee-based IoT devices for wireless multimedia sensor networks. Multimed Tools Appl print, pp 1–18

  15. Chen S, Yuan Z, Muntean G-M (2016) An energy-aware routing algorithm for quality-oriented wireless video delivery. IEEE Trans Broadcast 62(1):55–68

    Article  Google Scholar 

  16. Chien S-Y, Cheng T-Y, Ou S-H, Chiu C-C, Lee C-H, Somayazulu VS, Chen Y-K (2013) Power consumption analysis for distributed video sensors in machine-to-machine networks. IEEE J Emerg Sel Top Circ Syst 3(1):55–64

    Article  Google Scholar 

  17. Cotuk H, Bicakci K, Tavli B, Uzun E (2014) The impact of transmission power control strategies on lifetime of wireless sensor networks. IEEE Trans Comput 63(11):2866–2879

    Article  MathSciNet  MATH  Google Scholar 

  18. Cotuk H, Tavli B, Bicakci K, Akgun MB (2014) The impact of bandwidth constraints on the energy consumption of wireless sensor networks. In: IEEE Wireless Communications and Networking Conference (WCNC), pp 2787–2792

  19. Engineering Services (2017) Avnet. WandCam (AES-WCAM-ADPT-G)—getting started guide. [Online]. Available: http://www.em.avnet.com/wandcam

  20. Feldt R, Magazinius A (2010) Validity threats in empirical software engineering research–an initial survey. In: SEKE, pp 374–379

  21. FFmpeg (2017) [Online]. Available: http://ffmpeg.org

  22. Free Electrons (2011) Power management. http://free-electrons.com/doc/power-management.pdf

  23. Gayan (2012) Powerstat: Power Consumption Calculator for Ubuntu Linux. http://www.hecticgeek.com/2012/02/powerstat-power-calculator-ubuntu-linux

  24. Ghadi M, Laouamer L, Moulahi T (2016) Securing data exchange in wireless multimedia sensor networks: perspectives and challenges. Multimed Tools Appl 75(6):3425–3451

    Article  Google Scholar 

  25. Ghasemzadeh H, Panuccio P, Trovato S, Fortino G, Jafari R (2014) Power-aware activity monitoring using distributed wearable sensors. IEEE Trans Human-Mach Syst 44(4):537–544

    Article  Google Scholar 

  26. Go Y, Kwon OC, Song H (2015) An energy-efficient HTTP adaptive video streaming with networking cost constraint over heterogeneous wireless networks. IEEE Trans Multimed 17(9):1646–1657

    Article  Google Scholar 

  27. González S, Vargas TR, Arce P, Guerri JC (2016) Energy optimization for video monitoring system in agricultural areas using single board computer nodes and wireless ad hoc networks. In: Proceedings of the IEEE Symposium on Signal Processing, Images and Artificial Vision (STSIVA), pp 1–7

  28. GStreamer: Open source multimedia framework (2017) [Online]. Available: http://gstreamer.freedesktop.org/

  29. Guerrero-Zapata M, Zilan R, Barceló-Ordinas JM, Bicakci K, Tavli B (2010) The future of security in wireless multimedia sensor networks. Telecommun Syst 45(1):77–91

    Article  Google Scholar 

  30. Haas C, Wilke J, Stöhr V (2012) Realistic simulation of energy consumption in wireless sensor networks. In: Wireless Sensor Networks. Springer, pp 82–97

  31. Haas C, Munz S, Wilke J, Hergenroder A (2013) Evaluating energy-efficiency of hardware-based security mechanisms. In: Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp 560–565

  32. Hamid Z, Hussain FB, Pyun J-Y (2016) Delay and link utilization aware routing protocol for wireless multimedia sensor networks. Multimed Tools Appl 75 (14):8195–8216

    Article  Google Scholar 

  33. Heitmann N, Kindt P, Chakraborty S (2016) EG0N: Portable in-situ energy measurement for low-power sensor devices. In: IEEE International Symposium on VLSI Design and Test (VDAT), pp 1–6

  34. Hergenroeder A, Wilke J, Meier D (2010) Distributed energy measurements in WSN testbeds with a sensor node management device (SNMD). In: Proceedings of the International Conference on Architecture of Computing Systems (ARCS), pp 1–7

  35. Hergenroder A, Furthmuller J (2012) On energy measurement methods in wireless networks. In: Proceedings of the IEEE International Conference on Communications (ICC), pp 6268–6272

  36. Heydari N, Minaei-Bidgoli B (2017) Reduce energy consumption and send secure data wireless multimedia sensor networks using a combination of techniques for multi-layer watermark and deep learning. Int J Comp Sci Netw Sec (IJCSNS) 17(2):98–105

    Google Scholar 

  37. Horneber J, Hergenröder A (2014) A survey on testbeds and experimentation environments for wireless sensor networks. IEEE Commun Surv Tutorials 16(4):1820–1838

    Article  Google Scholar 

  38. Huang S-C, Chang H-Y (2017) A farmland multimedia data collection method using mobile sink for wireless sensor networks. Multimed Tools Appl 76(19):19 463–19 478

    Article  Google Scholar 

  39. Javaid S, Fahim H, Hamid Z, Hussain FB (2018) Traffic-aware congestion control (TACC) for wireless multimedia sensor networks. Multimed Tools Appl, in print, pp 1–20

  40. Jiang X, Dutta P, Culler D, Stoica I (2007) Micro power meter for energy monitoring of wireless sensor networks at scale. In: Proceedings of the International Symposium on Information Processing in Sensor Network (IPSN), pp 186–195

  41. Karakus C, Gurbuz AC, Tavli B (2013) Analysis of energy efficiency of compressive sensing in wireless sensor networks. IEEE Sens J 13(5):1999–2008

    Article  Google Scholar 

  42. Kidwai NR, Khan E, Reisslein M (2016) ZM-SPECK: A fast and memoryless image coder for multimedia sensor networks. IEEE Sens J 16(8):2575–2587

    Article  Google Scholar 

  43. Kim Y, Bok K, Son I, Park J, Lee B, Yoo J (2017) Positioning sensor nodes and smart devices for multimedia data transmission in wireless sensor and mobile P2P networks. Multimed Tools Appl 76(16):17 193–17 211

    Article  Google Scholar 

  44. Ko JH, Mudassar BA, Mukhopadhyay S (2015) An energy-efficient wireless video sensor node for moving object surveillance. IEEE Trans Multi-Scale Comput Syst 1(1):7–18

    Article  Google Scholar 

  45. Kua J, Armitage G, Branch P (2017) A survey of rate adaptation techniques for dynamic adaptive streaming over HTTP. IEEE Commun Surv Tutorials 19(3):1842–1866. Third Qu

    Article  Google Scholar 

  46. Lee J-Y, Jung K-D, Moon S-J, Jeong H-Y (2017) Improvement on LEACH protocol of a wide-area wireless sensor network. Multimed Tools Appl 76(19):19 843–19 860

    Article  Google Scholar 

  47. Lenk J (1997) Simplified design of voltage/frequency converters, series edn series for design engineers. elsevier science. [Online]. Available: http://books.google.com/books?id=a8avGaqz8AoC

  48. Li Y, Shen D, Zhou G (2017) Energy optimization for mobile video streaming via an aggregate model. Multimed Tools Appl 76(20):20 781–20 797

    Article  Google Scholar 

  49. Liu B, Gupta A, Jain R (2008) MedSMan: A live multimedia stream querying system. Multimed Tools Appl 38(2):209–232

    Article  Google Scholar 

  50. Liu CZ, Kavakli M (2018) A data-aware confidential tunnel for wireless sensor media networks. Multimed Tools Appl, in print, pp 1–23

  51. Magno M, Boyle D, Brunelli D, Popovici E, Benini L (2014) Ensuring survivability of resource-intensive sensor networks through ultra-low power overlays. IEEE Trans Ind Inf 10(2):946–956

    Article  Google Scholar 

  52. Margi CB, Petkov V, Obraczka K, Manduchi R (2006) Characterizing energy consumption in a visual sensor network testbed. In: Proceedings of the International Conference on Testbeds & Research Infrastructure for the DEvelopment of NeTworks & COMmunities, pp 1–8

  53. Mekonnen T, Harjula E, Ylianttila M (2016) Energy efficient motion detection in a high-resolution wireless surveillance camera node. In: Proceedings of the ACM International Conference on Mobile and Ubique Multimedia, pp 373–375

  54. Milenkovic A, Milenkovic M, Jovanov E, Hite D, Raskovic D (2005) An environment for runtime power monitoring of wireless sensor network platforms. In: Southeastern Symposium on System Theory, (SSST), pp 406–410

  55. Misra S, Mohanta D (2010) Adaptive listen for energy-efficient medium access control in wireless sensor networks. Multimed Tools Appl 47(1):121–145

    Article  Google Scholar 

  56. Mooshimeter M (2016) Dmm-ble-2x01a mooshimeter technical specifications. [online]. available: https://moosh.im/mooshimeter/specs/

  57. Naderiparizi S, Parks AN, Parizi FS, Smith J (2016) µ monitor: In-situ energy monitoring with microwatt power consumption. In: Proceedings of the IEEE International Conference on RFID (RFID), pp 1–8

  58. Noureddine A, Bourdon A, Rouvoy R, Seinturier L (2012) A preliminary study of the impact of software engineering on GreenIT. In: Proceedings of the International Workshop on Green and Sustainable Software, Zurich, pp 21–27

  59. Noureddine A, Bourdon A, Rouvoy R, Seinturier L (2012) Runtime monitoring of software energy hotspots. In: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering (ASE), pp 160–169

  60. Pantazis N, Vergados D (2007) A survey on power control issues in wireless sensor networks. IEEE Commun Surv Tutorials 9(4):86–107. 4th Quarter

    Article  Google Scholar 

  61. Pantazis NA, Nikolidakis SA, Vergados DD (2013) Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Commun Surv Tutorials 15(2):551–591

    Article  Google Scholar 

  62. Pantos R, May W (2017) HTTP live streaming, working draft, IETF secretariat, Internet-Draft draft-pantos-http-live-streaming-21.txt. http://developer.apple.com/resources/http-streaming. [Online]. Available: http://tools.ietf.org/html/draft-pantos-http-live-streaming-21

  63. Popovici E, Magno M, Marinkovic S (2013) Power management techniques for wireless sensor networks: a review. In: Proceedings of the IEEE International Workshop on Advance in Sensors and Interface (IWASI), pp 194–198

  64. Porambage P, Heikkinen A, Harjula E, Gurtov A, Ylianttila M (2016) Quantitative power consumption analysis of a multi-tier wireless multimedia sensor network. In: Proceedings of the VDE Eu Wireless Conference, pp 1–6

  65. Rainer B, Petscharnig S, Timmerer C, Hellwagner H (2017) Statistically indifferent quality variation: An approach for reducing multimedia distribution cost for adaptive video streaming services. IEEE Trans Multimed 19(4):849–860

    Article  Google Scholar 

  66. Ramakrishna M, Karunakar A (2017) SIP and SDP based content adaptation during real-time video streaming in future internets. Multimed Tools Appl 76(20):21 171–21 191

    Article  Google Scholar 

  67. Rashid B, Rehmani MH (2016) Applications of wireless sensor networks for urban areas: A survey. J Netw Comput Appl 60:192–219

    Article  Google Scholar 

  68. Rault T, Bouabdallah A, Challal Y (2014) Energy efficiency in wireless sensor networks: A top-down survey. Comput Netw 67:104–122

    Article  Google Scholar 

  69. Redondi A, Buranapanichkit D, Cesana M, Tagliasacchi M, Andreopoulos Y (2014) Energy consumption of visual sensor networks: Impact of spatio-temporal coverage. IEEE Trans Circ Syst Video Technol 24(12):2117–2131

    Article  Google Scholar 

  70. Rein S, Reisslein M (2011) Low-memory wavelet transforms for wireless sensor networks: A tutorial. IEEE Commun Surv Tutorials 13(2):291–307

    Article  Google Scholar 

  71. Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software engineering. Empir Softw Eng 14(2):131–164

    Article  Google Scholar 

  72. Saginbekov S, Shakenov C (2016) Testing wireless sensor networks with hybrid simulators, arXiv:1602.01567

  73. SanMiguel JC, Cavallaro A (2017) Energy consumption models for smart camera networks. IEEE Trans Circuits Syst Video Technol 27(12):2661–2674

    Article  Google Scholar 

  74. Sarif BA, Pourazad M, Nasiopoulos P, Leung VC (2014) Analysis of power consumption of H.264/AVC-based video sensor networks through modeling the encoding complexity and bitrate. In: Proceedings of the International Confernece on Digital Society (ICDS), pp 1–6

  75. Sarif BA, Pourazad M, Nasiopoulos P, Leung VC (2015) A new scheme for estimating H.264/AVC-based video sensor network power consumption. In: Proceedings of the World Congress on Information Technology Applications and Services, pp 1–3

  76. Sarif BA, Pourazad M, Nasiopoulos P, Leung VC (2015) A study on the power consumption of H.264/AVC-based video sensor network, International Journal of Distributed Sensor Networks

  77. Seema A, Reisslein M (2011) Towards efficient wireless video sensor networks: A survey of existing node architectures and proposal for a Flexi-WVSNP design. IEEE Commun Surv Tutorials 13(3):462–486. 3rd Quarter

    Article  Google Scholar 

  78. Seema A, Schwoebel L, Shah T, Morgan J, Reisslein M (2015) WVSNP-DASH: Name-based segmented video streaming. IEEE Trans Broadcast 61(3):346–355

    Article  Google Scholar 

  79. Schroeder D, Ilangovan A, Reisslein M, Steinbach E (2018) Efficient multi-rate video encoding for HEVC-based adaptive HTTP streaming. IEEE Transactions on Circuits and Systems for Video Technology, in print

  80. Shin H, Park J-S (2017) Optimizing random network coding for multimedia content distribution over smartphones. Multimed Tools Appl 76(19):19 379–19 395

    Article  Google Scholar 

  81. Slotfeldt T (2016) Simplify graphical user interface and video integration for i.MX 6 series processors. [Online]. Available: https://community.nxp.com/docs/DOC-104267

  82. Smith J, Colwell A, Wolenetz M (2016) Webm byte stream format, w3c, W3C note. https://www.w3.org/TR/2016/NOTE-mse-byte-stream-format-webm-20161004/

  83. Smith J, Watson M, Wolenetz M, Bateman A, Colwell A (2016) Mpeg-2 TS byte stream format, w3c, W3C note. https://www.w3.org/TR/2016/NOTE-mse-byte-stream-format-mp2t-20161004/

  84. Snajder B, Jelicic V, Kalafatic Z, Bilas V (2016) Wireless sensor node modelling for energy efficiency analysis in data-intensive periodic monitoring. Ad Hoc Netw 49:29–41

    Article  Google Scholar 

  85. Sodagar I (2011) The MPEG-DASH standard for multimedia streaming over the internet. IEEE MultiMed 18(4):62–67

    Article  Google Scholar 

  86. Stamatescu G, Chiṫu C, Vasile C, Stamatescu I, Popescu D, Sgârciu V (2014) Analytical and experimental sensor node energy modeling in ambient monitoring. In: Proceedings of the International Conference on Industrial Electronics and Applications (ICIEA), pp 1615–1620

  87. Tavli B, Bicakci K, Zilan R, Barcelo-Ordinas JM (2012) A survey of visual sensor network platforms. Multimed Tools Appl 60(3):689–726

    Article  Google Scholar 

  88. Thang TC, Ho Q-D, Kang J-W, Pham A (2012) Adaptive streaming of audiovisual content using MPEG DASH. IEEE Trans Consum Electron 58(1):78–85

    Article  Google Scholar 

  89. Thomas E, van Deventer M, Stockhammer T, Begen AC, Champel M-L, Oyman O (2016) Applications and deployments of server and network assisted DASH (SAND). In: Proceedings of the IET IBC Conference, pp 1–8

  90. Titzer B, Lee D, Palsberg J (2005) Avrora: scalable sensor network simulation with precise timing. In: Proceedings of the International Symposium on Information Processing in Sensor Networks (IPSN), pp 477–482

  91. Trasvina-Moreno CA, Asensio A, Casas R, Blasco R, Marco A (2014) WiFi sensor networks: A study of energy consumption. In: Proceedings of the IEEE International Multi-Conference on System, Signals Devices (SSD), pp 1–6

  92. van Rest J, Grootjen F, Grootjen M, Wijn R, Aarts O, Roelofs M, Burghouts GJ, Bouma H, Alic L, Kraaij W (2014) Requirements for multimedia metadata schemes in surveillance applications for security. Multimed Tools Appl 70(1):573–598

    Article  Google Scholar 

  93. Vergados DJ, Michalas A, Sgora A, Vergados DD, Chatzimisios P (2016) FDASH: A fuzzy-based MPEG/DASH adaptation algorithm. IEEE Syst J 10(2):859–868

    Article  Google Scholar 

  94. Walpole RE, Myers RH, Myers SL, Ye K (2016) Probability and statistics for engineers and scientists, 9th edn. Pearson, UK

    MATH  Google Scholar 

  95. Watson M, Colwell A, Bateman A, Smith J, Wolenetz M (2016) Iso bmff byte stream format, w3c, W3C note. https://www.w3.org/TR/2016/NOTE-mse-byte-stream-format-isobmff-20161004/

  96. Watson M, Colwell A, Bateman A, Smith J, Wolenetz M (2016) Media source extensions™, W3C W3C Recommendation. https://www.w3.org/TR/2016/REC-media-source-20161117/

  97. Wohlin C, Höst M, Henningsson K (2003) Empirical research methods in software engineering. In: Empirical Methods and Studies in Software Engineering, Lecture Notes in Computer Science (LNCS), Volume 2765. Springer, pp 7–23

  98. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software engineering. Springer-Verlag, Berlin (2012) Experimentation in

    Book  MATH  Google Scholar 

  99. Wunderlich S, Cabrera J, Fitzek F, Reisslein M (2017) Network coding in heterogeneous multicore IoT nodes with DAG scheduling of parallel matrix block operations. IEEE Internet Things J 4 (4):917– 933

    Article  Google Scholar 

  100. Yan R, Sun H, Qian Y (2013) Energy-aware sensor node design with its application in wireless sensor networks. IEEE Trans Instrum Measur 62(5):1183–1191

    Article  Google Scholar 

  101. Yap FG, Yen H-H (2014) A survey on sensor coverage and visual data capturing/processing/ transmission in wireless visual sensor networks. Sensors 14(2):3506–3527

    Article  Google Scholar 

  102. Yuan D, Kanhere SS, Hollick M (2017) Instrumenting wireless sensor networks—a survey on the metrics that matter. Pervasive Mob Comput 37:45–62

    Article  Google Scholar 

  103. Zhang J, Fang G, Peng C, Guo M, Wei S, Swaminathan V (2016) Profiling energy consumption of DASH video streaming over 4G LTE networks, pp 3:1–3:6

  104. Zhang C, Liu J, Chen F, Cui Y, Ngai EC-H, Hu Y (2017) Dependency-and similarity-aware caching for HTTP adaptive streaming. multimedia tools and applications, in print, pp 1–22

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Reisslein.

Additional information

Parts of this work were conducted while Y. Liu visited Arizona State University, Tempe, sponsored by the China Scholarship Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seema, A., Shah, T., Schwoebel, L. et al. Power profiling of multimedia sensor node with name-based segment streaming. Multimed Tools Appl 77, 21417–21443 (2018). https://doi.org/10.1007/s11042-017-5565-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5565-1

Keywords

Navigation